
 1

A Review of Approaches to Developing Service Management
Systems

David Lewis
Department of Computer Science
University College London,
E-Mail: D.Lewis@cs.ucl.ac.uk

Abstract:
As service management systems are deployed in an open service market
environment, the pressures on their developers to shorten development times
and improve the flexibility of systems will increase. Component reuse may
help in alleviating some of these pressures; however, while object-oriented
reuse is used in the definition of interfaces for management systems, the
systematic application of reuse to the systems’ internal design is not well
established. This paper examines some of the approaches applicable to service
management system development from the Telecommunications, Distributed
Systems, Internet and Software Engineering fields. Experience in applying
some of these approaches is presented, and based on this, refined approaches
to service management system development are discussed.

Keywords:
Service Management, Open Distributed Systems, Object-oriented
Development Methodology, Component Reuse

1. INTRODUCTION

Telecommunications management has traditionally been centered on the management
of networks. Standards development in this sector has been driven primarily by the
need for open management interfaces to network elements. However, the spread of
liberalization and competition through the global telecommunications industry is
highlighting the importance of rapidly delivering new, improved services to the
customer, at lower cost [1]. In the emerging open market in telecommunications
services, therefore, a greater emphasis is being placed on service management. This
paper examines existing development approaches to that can be applied to service
management systems, and assesses them based on development experiences.

The following section details the requirements imposed by the open service market.
Section 3 reviews existing approaches from the Telecommunications, Distributed
Systems, Software Engineering and Internet/WWW fields. Section 4 assesses relevant
experience from recent research projects performing service management system
development. Section 5 discusses how these approaches can be consolidated and how
further improvements can be made.

2. REQUIREMENTS ON THE DEVELOPMENT PROCESS

Service management aims to ensure that telecommunications services are delivered to
the customer with reduced cost and with an excellent level of service, while also
enabling the rapid introduction of new services. The open services market will place
many additional requirements on service management systems in comparison to those
imposed by the state-owned monopoly-based system of service provision. The
emergence of a large and diverse population of service providers in the
telecommunications market, together with the impact of some aspects of competitive
regulation, means that it is very important for a provider’s service management
systems to interact with those of other providers. If open competition is to be
supported through these interactions, service management systems need to conform to

 2

inter-domain interfaces specified as open standards or industry agreements of some
form. Similarly, to avoid service management systems causing customer lock-in,
interfaces between the customer and the provider of services should also conform to
open interface definitions.

A further significant requirement on telecommunication management systems, when
compared to other aspects of communications software, e.g., signaling and protocol
design, is the emphasis on user requirements. Management systems accomplish their
role principally by delivering accurate and timely information to human
administrators, be they network administrators, help-desk operators, or the customers
themselves. Therefore, user requirements play a significant role in the analysis and
design of management systems.

The pace of change in network management systems is largely tied to the pace of
change in network technology. In a highly competitive services market, the
requirements on service management systems will be greatly influenced by factors
related to marketing, pricing, responding to competitors’ actions, market
realignments, e.g., mergers and acquisitions, and the introduction of new services. As
these factors are likely to change much more rapidly and unpredictably than the
underlying network technology, service management system must exhibit a much
higher level of flexibility and robustness to change than network management
systems.

The requirement for flexibility and robustness, together with the need for rapid
service development motivate the need for reuse techniques in service management
system development. Reuse may take several different forms. Reuse of specification
involves the use of commonly agreed interface specifications for a component. Reuse
of implementation covers the reuse of existing implementations as they are provided,
i.e., as a black box without any modification. Reuse of design covers situations where
existing designs, possibly with accompanying implementations, exist, but typically
need to be modified somewhat to suit a specific application.

Adoption of reuse techniques in software development requires a degree of long term
planning since the investment made in identifying, designing, implementing and
maintaining a reusable component will only be returned over several instances of its
reuse. Reusable software products usually take the form of libraries or frameworks
that provide potentially widely applicable functionality, in order to maximize the
return through sales on the initial investment. Conformance of a reusable product to
an international standard or industry agreement will lessen the risk perceived in
developing the product. As many interface specifications have already been
standardized for telecommunications management, reusable components addressing
this area need to exhibit a tight coupling between specification reuse and
implementation reuse. Any methodological appraoch to developing reusable software
for telecommunications management has to address the interaction between
stqandards developers, component developers and system developers. These
relationships are outlined in figure 1.

 3

identifying common components
and open interfaces

 Standardisation
area

Component Development
 area

System Development
area

examine multi-domain
issues, generate

industry agreements on
open architectures and

interfaces

develop components for
reuse in multiple
differnet systems

develop systems for
use in specific services

architectural guidelines

business requirements for
service systems

business requirements for common
components and platforms

reusable components/
platforms/ application

frameworks

requirements and feedback
on reusable components

Figure 1: A business model of the telecommunications management software
development sector

3. EXISTING APPROACHES

This section provides an overview of the approaches to management system
development available from the following industry sectors: telecommunications
industry, distributed systems, software engineering and WWW/Java.

3.1 Telecommunications Industry

The development of management system in the telecommunications field has been
heavily influenced by the manager-agent paradigm where agents are modeled as
collection of managed objects (MOs). The principal examples of this paradigm are
OSI Systems Management (OSI-SM) and Internet management. The ITU-T’s
Telecommunications Management Network (TMN) recommendations [2] build on the
manager-agent paradigm by defining an architecture for multi-layer networks of
Operation Systems Functions (OSFs) operating in both manager and agent roles that
co-operate to manage telecommunications services and networks. The TMN
recommendations include an Interface Specification Methodology [3], which
provides guidelines for the functional decomposition of management interfaces found
at reference points in the TMN functional architecture. This methodology
concentrates on generating agent interfaces from management function requirements.
It provides no guidance on designing the interactions between the agents and manager
functionality of an OSF.

OSI-SM also provides a set of System Management Functions (SMF) that are
intended to provide descriptions of commonly required management functions, e.g.,
event management, log control or test management. SMFs are specified together with
the definition of generic attributes, actions and notification for managed objects that
perform the function. TMN platforms commonly provide implementations of the
SMFs for agent development, often with corresponding manager support. It is also
possible to inherit from the SMF MO definitions to provide similar functionality in

 4

custom MOs. TMN recommendations contain a similar set of generic, network
management related GDMO definitions in [4].

The Network Management Forum (NMF) is a non-profit industrial consortium that
aims to provide industry agreements to aid service providers and management system
vendors in the procurement and development of TMN-based management systems.
The agreements are based on the business needs of NMF members. They are
presented as either solution sets, which address specific management problems, or
component sets, that represent reusable components that can support solution sets,
i.e., aspects of TMN platform functionality such as logging. The solution set provides
the solution to a stated business problem and interface conformance statements for
resulting products, which together are termed an ensemble [5]. An ensemble packages
together an outline of what is to be managed, expressed as resources; what functions
are required to solve the management problem; and some scenarios to illuminate how
these functions should operate in sequence on the resources. The process for
developing these ensembles largely revolves around the identification of management
functions and MO definitions from existing standards, with new MOs being defined
only when absolutely necessary. Packaging information in this format is aimed at
making the solution more accessible to industry practitioners and, therefore, more
readily reusable than existing formal standards.

Another group addressing the area of telecommunications software development
techniques is Study Group 10 of the ITU-T which is addressing languages and
general software aspects for telecommunications systems. Major outputs of this group
have been Recommendation Z.105 on the Specification and Description Language
(SDL), which provides a formal, object-oriented language for describing system
behavior, and Recommendation Z.120 on Message Sequence Charts (MSC) which
aims to provide a formalized technique for specifying sequence of signals in
telecommunication systems. Other areas being addressed by this group are: CHILL
(Recommendation Z.200), a high-level programming language for
telecommunications systems; testing and verification techniques for
telecommunications systems; quality assurance for the telecommunications software
process and behavior extensions to GDMO.

3.2 Open Distributed Processing

In response to some of the problems raised by the complexities introduced by large
scale distributed systems, ISO has developed the Reference Model for Open
Distributed Processing (ODP) [6]. This is a meta-standard intended to guide the
development of other standards by providing a framework for the integrated support
of distribution, interworking, interoperability and portability, all of which are relevant
to service management. ODP approaches the problem of describing distributed
systems by expressing the effects of distribution as a number of distribution
transparencies, e.g., location, access, or failure transparencies. Distributed systems
adhering to the ODP framework are described from five complementary viewpoints
addressing enterprise, information, computational, engineering, and technological
aspects of a system. These separate viewpoints together aim to provide a complete
and consistent view of the system.

Each viewpoint has an associated language for expressing rules relevant to the
concerns of that viewpoint. As viewpoints are separate but inter-related views of the
same system, the relations between terms in different views are subject to consistency
constraints. One aim of ODP-related research is that viewpoint languages could be

 5

defined in a formal way that would enable the automation of consistency checks
between viewpoints.

The Object Management Group’s CORBA standard [7] represents an agreement
between a wide range of IT industry players on an approach to integrating distributed
object-oriented systems. Though addressing some of the same concerns as ODP, it
has concentrated on providing a practical environment for programmers of monolithic
systems to easily develop distributed client-server applications. Interfaces to remote
objects are defined using an Interface Definition Language (IDL), from which stubs
and skeletons can be generated in a variety of languages when writing client and
server software. CORBA is proving a viable platform for service management since it
provides a better mechanism than existing TMN-based platforms for integrating the
wider range of applications found at this level, e.g., accounting databases, customer
service desktops, etc. The OMG also specifies a set of CORBA Services [8], which
provide commonly required services such as object naming, event propagation,
security or transaction. These CORBA Services are defined as object interfaces,
expressed in IDL, together with a description of how to obtain the service
functionality, including any operation sequencing dependencies. As with SMF, these
service definitions can either be provided as implementations in a CORBA product or
specialized for use in a specific application.

One body that has already attempted to apply ODP principles and implement the
results using CORBA, is the TINA Consortium. This industrial consortium of
network operators and telecommunications and computer equipment vendors, aims to
develop an open architecture for telecommunications services in a multi-vendor,
multi-provider environment. The approach is broad, combining service provisioning
principles from Intelligent Networks and telecommunications management principle
from TMN, but with ODP providing the overall framework [9]. Though TINA
adopted the use of ODP viewpoints, it has not adopted the viewpoint languages
suggested in [10] since they were insufficiently precise in their definition. For the
information viewpoint, TINA [11] advocates the use of the Object Model Notation
defined in [12] (referred to here as the Object Modeling Technique or OMT), which
provides a graphical notation for describing objects and their relationships. TINA
supplements this with a textual notation supporting quasi-GDMO object definitions
and an object relationship model based on the OSI General Relationship Model [13].
This notation provides a representation of objects, including their attributes, the
constraints and operations that cause change in the object's state, as well as object
inheritance and relationships between objects. For the computational viewpoint TINA
[14] again has adopted its own graphical notation consisting of simple component
diagrams representing computational objects and the operational and stream
interfaces they offer to each other. To provide details of computational object
operations and interface structure a superset of IDL, termed Object Definition
Language (ODL), is used. ODL allows the definition of multiple interfaces, stream
interfaces, references to interfaces used on other objects and the collection of objects
into groups termed building blocks. For the engineering viewpoint [15] a distributed
processing environment (DPE) is assumed which provides various distribution
transparencies required by computational objects (COs) through a set of services
made available to engineering objects populating the DPE. The engineering objects
themselves are arrived at directly by decomposing the COs. As TINA has adopted
CORBA as its DPE, this decomposition consists of mapping ODL to IDL.

TINA goes beyond the ODP by specifying an outline methodology for developing
TINA services [16]. These guidelines present a development process where the

 6

enterprise viewpoint of a service is addressed during the analysis stage of the
development process, the informational and computational viewpoints are both used
during the design stages and the engineering model just before the implementation
stage. Though the information viewpoint model and computational viewpoint model
are described as complementary parts of the design process, exactly how to iterate
between them and to describe the relationship between the different objects in these
models is not stated in any prescriptive manner. The TINA Consortium has defined
service management components using these techniques as part of its Service
Architecture [17].

3.3 Software Engineering

The approaches to service management system development described in the previous
two sections are very focused on the identification of interfaces between components.
This is not surprising since interoperability has always been a major issue in
telecommunications and distributed systems and therefore ensuring compatibility of
interfaces always features highly in the approaches taken by these industries. The
structure of the component behind the interface, often complex compared to the
interface itself, has not been exposed to the same push towards common practices
within these industries. The software engineering industry however has more of a
focus on the whole life-cycle of software, from its analysis and design to its
implementation and maintenance. It therefore is a source of useful common practice
for development of both a system’s interfaces and its internal components. In the case
of interface specification, the telecommunications industry has already borrowed
many ideas on object-orientation from the software engineering industry, e.g., the use
of OMT in TINA.

A very large number of different software development methodologies have emerged
from the software engineering community, but with a single “silver bullet” approach
proving to be very elusive. One area of convergence, however, has been in graphical
representation of object oriented analysis and design entities. This has been promoted
jointly by Grady Booch, James Rumbaugh and Ivar Jacobsen, authors of three of the
leading methodologies of recent years and now currently working together at Rational
Software Corporation. This group observed that though their proposed methodologies
were different, often with distinct emphases, many of the graphical notations used
were semantically very similar. These were therefore combined into the Unified
Modeling Language (UML) [18] which provides a single meta model for structuring
the components of object-oriented analysis and design models together with
guidelines of how they could be visually rendered to users of CASE tools. UML is
presented as an open standard, and several CASE tool vendors are supporting it.
UML has also been proposed to the OMG as part of its call for proposals towards a
common development methodology for distributed systems, thus UML may play an
increasingly important part in CORBA-based service management system
development. Note however that UML specifically addresses only a notation, and not
the process of a methodology.

Of the popular methodologies, the Object Oriented Software Engineering
methodology [19] seems worthy of examination in relation to service management
because in addition to supporting robust object-oriented structuring of systems, the
focus on use cases fits well with the emphasis on end user requirements needed in
management systems. Furthermore this technique addresses the whole software life-
cycle more comprehensively than some comparable techniques, thus supporting fully
the telecommunications service life-cycle models that service management systems
must inhabit.

 7

The software engineering community has recently recognized problems with reuse
techniques that rely solely on object-orientation. One response to these problems has
been to adapt the concept of Design Patterns from the architectural and construction
industry and apply it to software reuse as demonstrated by Eric Gamma [20]. Design
patterns aim to capture the knowledge of experienced designers and document it in a
manner that facilitates the communication of architectural knowledge and known
design traps to other developers. Typically, therefore, design patterns represent
common, well-proven designs. There are several slightly different forms suggested
for design pattern documentation, however they all follow a common structure. At a
minimum a design pattern states a problem and outlines a solution to it, with a context
description that indicates the applicability of the solution. The latter part is key, since
the aim is not to sell the pattern to the reader, but to provide the information needed
by the reader to enable them to gauge whether the solution presented fits well to the
problem with which they are faced and satisfies any other (possibly non-functional)
requirements placed upon a possible solution. An important feature of a pattern is a
suitable, and preferably brief, name. In this way it is hoped that pattern based
terminology will evolve into a more powerful means for communicating between
software developers. Great emphasis is placed on expressing patterns concisely and
clearly and ideally they should also contain an example of an application or coding of
the pattern. Design patterns are typically collected together into Pattern Catalogues,
though more benefit can be gained for the user when a collection of related patterns,
possibly addressing a specific application domain, are carefully cross-indexed, to
show how the solutions can work together in different ways. Such an inter-related
collection of patterns is referred to as a Pattern Language.

Gamma’s original pattern catalogue addressed how small groups of software objects
solved common problems, however patterns have been written to address a wide
range of problems up to and including patterns for structuring enterprises. Mowbray
and Malveau [21] suggest that patterns could actually be categorized into levels of
architectural scale from those containing a few classes to those spanning several
organizations.

3.4 World Wide Web and Java

A recent technological innovation that has had a profound impact on many areas of
distributed computing has been the World Wide Web (WWW) and its integration
with Java. The ubiquity of WWW browsers makes them an ideal platform for the
management work station function, i.e., the application used by management users.
The major impact this has on the development cycle of management systems is that it
dilutes the need for the definition of open interface between the provider of a
management function and a user-operated client. Therefore, instead of having to
conform to slowly emerging industry agreements, the provider of a management
system can provide whatever management server interface they wish, provided its
release is accompanied by that of compatible, WWW-based user applications. This
approach is also well suited for user interface development techniques that rely on
multiple development interactions based on user feedback, e.g., rapid prototyping.
The reusability of Java software is enhanced by the use of JavaBeans, which provides
a framework for easily assembling reusable Java components, i.e., Beans, into
applications. This is primarily provided through support for a common event,
persistency and property customization mechanisms, together with introspection
facilities for supporting visual programming.

4. DEVELOPMENT EXPERIENCES

 8

Evaluating the effectiveness of the various approaches to service management system
development is difficult since assessments that are made are often not in the public
domain, and experience in developing management systems for multi-provider
applications is still rare. One source of such information, however, is research
projects that have undertaken major management system development and have been
in a position to publish their findings on the development process. The results of three
such projects are presented here.

The European Union funded ICM (Integrated Communications Management) project
has analyzed some of its experiences in developing complex TMN-based systems
[22]. Here, the primary objective was the development of a single provider’s TMN
consisting of several, as yet un-standardized, service and network level management
functions. The development process adopted was based on M.3020 [3], however, it
was found that to apply this to a collection of management OSFs, the M.3020 process
had to be augmented to support the development of distributed management
components that needed to interact with each other in both manager and agent roles.
This was performed by first decomposing the required management services into
management function components. The information flow between components was
then analyzed and this was used together with non-functional requirements, e.g.,
delay constraints, load sharing and information consistency, to determine how the
components mapped onto TMN physical building block, i.e., Operations Systems
(OSs).

Further TMN system development experience was recorded by the EU-funded project
PREPARE [23]. This project undertook the development of several inter-domain
service management systems for which few suitable standards were available. The
project therefore had to evolve a methodology that enabled it to define new
management functions and objects for systems with multiple users and multiple inter-
domain management interfaces [24]. The process developed centered on the use of
scenarios to define the often complex interactions between multiple management
users and systems. The initial requirements’ analysis, termed enterprise modeling,
was performed using a technique developed in the ORDIT project [25]. This involved
an analysis of the enterprise context of the various systems being developed. This
analysis was stated in terms of the organizations that were stakeholders in the service
being managed and the human actors operating within those stakeholders, e.g.,
account managers, network managers and service end users. The requirements were
then extracted by stating responsibilities between actors and the obligations they
fulfilled to discharge those responsibilities. These obligations were then refined to be
expressed in terms of a set of activities operating on a set of resources. To show the
relationships between the different activities performed by different actors, inter-
domain management scenarios were drawn up for the interactions that involved more
than one stakeholder. For example one scenario was that a fault in an ATM bearer
service provider is propagated up a value chain of providers resulting in a user being
informed of the fault’s effect on a multimedia conferencing service. The model of
stakeholders, actors and their relationships was then used as the basis for defining a
TMN functional architecture containing network element functions (NEFs), network
and service level OSFs and work station functions (WSFs) and for identifying the
reference points needed between them. In this respect, the approach followed
emphasized the definition of inter-domain interactions rather than the intra-domain
interactions that were the focus of the ICM approach. The activity and resource
descriptions were then used to develop the interfaces that would instantiate these
reference points as GDMO MIB definitions. The scenarios at this stage were refined
into sequence diagrams showing CMIP interactions between different NEFs, OSFs

 9

and WSFs. This approach resulted in the successful development of complex
prototypes of an open service market management situation involving several OSFs,
and WSFs.

Though such a research project does not reflect completely many of the pressures on
the development process present in a commercial environment, it still enables us to
assess some of problems involved. Principally these were encountered in the large
leap that needed to be taken by designers in developing interface MIB definitions
from the activities, resource and scenario descriptions. The refinement of scenarios
provided a good medium for ensuring that the interfaces were consistent with the
original requirements. However working from this basically functional requirements'
analysis put the burden of reaping the benefits of object-orientated reuse in GDMO
definitions largely on the intuition and experience of the designers. In addition, in
defining GDMO interfaces which supported complex inter-domain interactions, it
was found very difficult to express the behavior of individual MOs in a way that
made the behavior of an OSF with multiple interfaces clear to its implementers. The
refinement of scenarios into CMIP interaction diagrams helped somewhat in
clarifying the OSF’s external behavior, however a clear route to designing the OSF’s
internal design structure was still lacking. An additional advantage of the use of
CMIP interaction diagrams, however, was that they readily lent themselves to
forming the basis of test specifications for the final systems.

Direct experience of applying the ODP viewpoints to the area of multi-domain
management systems has been obtained in the EC funded project Prospect [26]. This
experience was gained in the context of the development of a tele-education service
which delivered its course content to users through an integration of; multiple
multimedia tele-services; a Virtual Private Network (VPN) service and an ATM
bearer service, all obtained from separate service provider organizations. The
challenge, therefore, was to provide management services for this composite tele-
education service, through the integration of the management services operated by
these various subcontracting organizations. The management functional areas
addressed were configuration, subscription and accounting management. ODP was
selected as an approach here since it allowed the design of the systems developed to
be expressed in a manner easily comparable with other contemporary research,
development and standardization initiatives that are also working towards aligning
with ODP, e.g. TINA-C and ITU-T’s working group on Open Distributed
Management [27].

As discussed previously however, ODP does not provide a development
methodology, so one had to be adopted that suited the needs of the project while
being faithful to the use of ODP viewpoints. The method followed was influenced
both by the experiences in the similar problem domain of the PREPARE project and
the use of ODP within TINA. The method emulated PREPARE in using ORDIT for
the initial requirements' analysis before identifying management functional
components at a very high level and describing their interactions through a set of
scenarios in order to refine the requirements. The selection of high level functional
components was driven largely by the reuse of existing designs for service
management, taken in some cases from PREPARE (e.g. multimedia conferencing,
VPN and ATM bearer configuration management), as well as more general service
management components from TINA 1994 Service Architecture (i.e. subscription and
accounting management). This high level functional decomposition was expressed as
a computational model, with CO interfaces identified where required to support
information flows.

 10

Using the scenarios to retain a focus on the user requirements, the information and
computational models were developed for the various components. For components
being designed from scratch or being modified from existing designs, only outline
information models were developed using the OMT notation, detailed models using
GDMO or quasi GDMO were not attempted. The computational models were found
however to be where most of the detailed design effort was centered, primarily since
this led most directly to the engineering model and hence implementation. Here, the
refinement of the scenarios as interaction diagrams between COs was found to be a
very useful development tool. Such diagrams helped in the identification of the
operations needed at the interfaces between COs, this being especially important
where the interface lay between COs being developed by different project partners.
The interaction diagrams were also found useful as a method for clarifying and
validating the relationship between Information Objects (IOs) and COs, if only in a
somewhat informal manner. When incorporating components from TINA which were
documented as separate information and computational models, the generation of
additional sequence diagrams was necessary to clarify the relationships between IOs
and COs sufficiently to support extending these designs and to provide the detail
needed for implementation.

As many of the components were to be implemented using a CORBA platform, the
detailed interface descriptions of the COs were specified in IDL. Separate CO server
interfaces were defined as individual IDL interfaces grouped in an IDL module
definition representing the CO. Where components where based on CMIP platforms
the interfaces were defined in GDMO, these being converted where necessary to IDL
for use in CORBA-CMIP gateways, using compilers based on the X/Open’s JIDM
recommendation [28].

5. DISCUSSION

These experiences show that interface-centric development approaches, such as that
in M.3020, are, by themselves, inadequate for supporting the development cycle of
the service management systems. The need for such a system to perform interactions
over multiple interfaces requires a development approach that addresses both the
system’s external interfaces and their relationships with the system’s internal state
and operation. ODP provides one approach for relating these different concerns,
through the use of viewpoints. The computational viewpoint supports functional
decomposition and interface definition, and the information viewpoint supports
object-oriented information modeling, so both support essential parts of the
development process. However, the experiences in Prospect indicate that the
difficulty in moving smoothly between these viewpoints in a design process reduces
the effectiveness of addressing these different concerns in this way.

Similar arguments can also be applied to reusable components. Though, ideally
commercial reusable component should consist of some required function visible only
through a public interface, the complex nature of service management systems, and
their rapidly changing requirements may limit this approach. If components are to be
used at different levels of architectural scale, then more complex components offering
multiple, interrelated interfaces must be presented with some exposure of their
internal operations and the dynamic relationships between external interfaces and
internal state. This is even more essential if a component is to be adaptable to
changing requirements. Such an approach is being examined in the latter stages of the
Prospect project, where both systems and reusable components are being developed
and documented through a combination of use case descriptions, object models
combining internal information and external interfaces, and sequence diagrams

 11

mapping the use cases onto the object model [29]. This approach is analogous to that
used for NMF ensembles, where the requirements (use cases), solution (object model)
and usage scenarios (sequence diagrams) are packaged together to make industry
agreements to management problems more readily accessible. A further analogy can
also be made to design patterns, were a similar problem-solution-context form is
used. Currently, design patterns are used to publicize proven solutions commonly
used by experienced developers. A novel application of the design pattern form,
however, could be in the publication of standardized components. As the number of
standardized components increases, this could greatly ease the task of identifying
candidate solutions for a particular application. In addition, the use of the pattern
form in the development of standardized components may accelerate their acceptance,
by revealing the key aims behind interface conformance specifications. The concept
of pattern languages could also be used in the structuring of families of standards, by
emphasizing the relationships between specific components. This approach has
already been adopted in some text books covering COS, including [21]. It is not
expected, however, that patterns could replace standards, since the latter are still
needed to provide consistent and unambiguous definitions of interfaces. Instead,
however, patterns may make the aim and application of standards more accessible
than their current, necessarily complex and detailed form. Thus, users of standards
would work initially with patterns referring to points of conformance, rather than
descriptions appended to conformance statements, as is the case with many existing
standard formats.

6. CONCLUSION

Service Management systems are under pressure to respond to the rapidly changing
requirements of the open services market. A methodology for their development must
accommodate the generation of and conformance to open interfaces, as well as
adopting reuse techniques to support flexible and robust designs. Existing interface-
oriented methodological approaches are found inadequate without augmentation to
link the interface design with internal data models of systems and the dynamic
relationships between the two. ODP viewpoints provide one approach that may
satisfy these requirements, but experience in their application found the viewpoint
languages available and the inter-viewpoint mapping insufficiently mature for this
application domain. An alternative approach using UML representations of use cases,
object models and sequence diagrams is seen as more promising and is currently
under evaluation. The similarity between this latter approach, NMF Ensembles and
design patterns reveals the potential benefits of embracing the design pattern form as
the principle mechanism for developing and presenting standardized components.

7. ACKNOWLEDGEMENTS

This work was partially sponsored by the European Commission under both the
PREPARE project (contract R2004) and the Prospect project (contract AC052). The
views stated here are not necessarily those of the Prospect consortium.

8. REFERENCES
[1] E. Adams and K. Willetts, The Lean Communications Provider: Surviving the Shakeout

through Service Management Excellence, McGraw-Hill, 1996, ISBN 0-07-
070306-X.

[2] Overview of TMN Recommendations, ITU-T Recommendation M.3000, 1995.

[3] TMN Interface Specification Methodology, ITU_T Draft Revised Recommendation
M.3020, 1994.

 12

[4] Generic Network Information Model, ITU-T Recommendation M.3100, 1992

[5] The “Ensemble” Concepts and Format NMF025, Issue 1.0, Network Management Forum,
Morristown, 1992.

[6] Information Technology- Open Distributed Processing- Reference Model- part 1:
Overview, ITU-T Draft Recommendation X.901/ ISO/IEC Draft
International Standard 10746-1, 1995.

[7] The Common Object Request Broker Architecture and Specification. OMG Document
Number 92.12.1, Rev. 1.1, Object Management Group, 1992.

[8] Common Object Services, Volume 1 and 2, Object Management Group, 1995.

[9] P. Prozeller, TINA and the Software Infrastructure of the Telecom Network of the Future,
Journal of Network and Systems Management, Vol. 5, No 4., December
1997.

[10] Information Technology- Open Distributed Processing- Reference Model- Part 4:
Architectural Semantics, ITU-T Draft Recommendation X.904/ ISO Draft
International Standard 10746-4, 1995.

[11] H. Christensen and E. Colban, Information Modeling Concepts, TINA Baseline
Document, TB_EAC.001_1.2_94, April 1994.

[12] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall, Englewood Cliffs, N.J., 1991.

[13] Information Technology- Open Systems Interconnection- Structure of Management
Information- Part 7: General Relationship Model, ITU-T Recommendation
X.725/ ISO/IEC Draft International Standard 10165-7, 1994.

[14] N. Natarajan, F. Dupuy, N. Singer, and H. Christensen, Computational Modeling
Concepts, TINA Baseline Document, TB_A2.HC.012_1.2_94, February
1994.

[15] P. Graubmann and N. Mercouroff, Engineering Modeling Concepts (DPE Architecture),
TINA Baseline Document, TB_NS.005_2.0_94, December 1994.

[16] J.Salleros, TINA-C Service Design Guidelines, TINA Report TP_JS_001_0.1_95, TINA
Consortium, March 1995.

[17] H. Berndt and R. Minerva, Service Architecture, TINA Baseline Document
TB_MDC.012_2.0_94, March 1995.

[18] H. Eriksson and M. Penker, UML Toolket, Wiley Computing Publishing, ISBN 0 471
19161 2, 1998.

[19] I. Jacobsen, M. Christerson, P. Jonsson, and G. Overgaard, Object-Oriented Software
Engineering, Addison-Wesley, 1992, ISBN 0-201-54435-0.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, Addison Wesley, 1995.

[21] T. Mowbray and R. Malveau, CORBA Design Patterns, Wiley, 1997 ISBN 0-471-15882-
8.

[22] D. Griffin (Ed), Integrated Communications Management of Broadband Networks, Crete
University Press,1997, ISBN 960 524 006 8.

[23] J. Hall (Ed), Management of Telecommunications Systems and Services: Modeling and
Implementing TMN-Based Multi-Domain Management, No. 1116 Lecture
Notes in Computer Science, Springer-Verlag, 1996, ISBN 3-540-61578-4

[24] D. Lewis, T. Tiropanis, L.H. Bjerring, and J. Hall, Experiences in Multi-domain
Management Service Development, Proceedings of the 3rd International

 13

Conference of Intelligence in Broadband Services and Networks, Heraklion,
Greece, October 1995, ISBN 3-540-60479-0.

[25] R. Strens and J. Dobson, Responsibility Modeling as a Technique for Organizational
Requirements Definition, Intelligent Systems Engineering, vol. 3, no. 1,
pp.20-26, 1994.

[26] V. Wade, D. Lewis, M. Sheppard, M. Tschichholz and J. Hall, A Methodology for
Developing Integrated Multi-domain Service Management Systems, Proc. of
4th International Conference on Intelligence in Services and Networks,
Como, Italy, May 1997, Springer-Verlag, 1997.

[27] Information Technology- Open Systems Interconnection- Open Distributed Management
Architecture, ISO/IEC Draft International standard, Draft Recommendation
X.708, June 1996.

[28] Inter-Domain Management Specifications: Specification Translation, X/Open
Preliminary Specification, X/Open, Reading, Draft of April 17, 1995.

[29] V. Wade, D. Lewis, W. Donnelly, D. Ranc, and N. Karatzas, A Design Process for the
Development of Multi Domain Service Management Systems, Guidelines for
ATM deployment and interoperability, S. Rao (editor), pages 88-103,
Baltzer Science Publishers.

9. BIOGRAPHY

Dave Lewis graduated in Electronic Engineering at the University of Southampton in
1987 and received an MSc. in Computer Science from University College London in
1990, where he has worked since, as a research fellow in the Computer Science
Department. He has worked primarily on the EU funded projects PREPARE and
Prospect, in which he has been responsible for planning high speed international
testbed networks and for leading teams developing integrated, multi-domain service
management systems. He is also working on a Ph.D., researching a service
management development architecture for the open services market.

 14

