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Abstract. We present a denotational semantics for a fully functional
subset of the Handel-C hardware compilation language [1], based on the
concept of typed assertion traces. We motivate the choice of semantic
domains by illustrating the complexities of the behaviour of the language,
paying particular attention to the prialt (priority-alternation) construct
of Handel-C. We then define the typed assertion traces over an abstract
notion of actions, which we then instantiate as state-transformers. The
denotational semantics is then given and some examples are discussed.
As is fitting given those honoured at the Festschrift of which this paper is
a part, we show how the work of both Dines Björner and Zhou Chaochen
act as inspiration, from the past, into the future for this research work.

1 Introduction

This paper describes a denotational semantics for Handel-C which gives a pro-
gram a meaning as a set of “Typed Assertion Traces”.

Handel-C1[1] is a language originally developed by the Hardware Compi-
lation Group at Oxford University Computing Laboratory, and now marketed
by Celoxica Ltd. It is a hybrid of CSP [2] and C, designed to target hardware
implementations, specifically field-programmable gate arrays (FPGAs) [3]. The
language has sequential and parallel constructs and global variable assignment
and channel communication. The language targets synchronous hardware with
multiple clock domains. All assignments and channel communication events take
one clock cycle. All expression and conditional evaluations, as well as priority
resolutions are deemed to be instantaneous, effectively being completed before
the current clock-cycle ends.

We see the final semantics of Handel-C as having four components: types;
priorities; synchronous cores; and the asynchronous environment. A detailed
description of these and their motivation is given in [4]. Here we simply stress that
this paper is primarily concerned with the semantics of the synchronous cores,
incorporating priorities. The topics of typing and the external asynchronous
interface are beyond the scope of this paper.

We first introduce the language, then describe prior and related work in this
area, before motivating and describing the domains used for our denotational
semantics.
1 Handel-C is the registered trademark of Celoxica Ltd (www.celoxica.com)



2 The Language

We introduce here the “mathematical” version of a stripped-down Handel-C,
which albeit simpler, has all the essential features of the full language.

2.1 Syntax

We have variables (x ∈ Var), and we assume the existence of an expression
syntax (e ∈ Exp) whose details need not concern us here. We also have identifiers
for channels (c ∈ Ch), and we consider all the above as having either boolean
or integer type, and occasionally use b to denote a boolean-valued expression.
We also have the notion of guards (g ∈ Grd), which denote the offering and
accepting of communication actions. Guards either denote a desire to perform
output of an expression’s value along a channel (c!e), to receive input via a
channel into a variable (c?x ), or a skip/default guard which always succeeds
(!?).

g ∈ G ::= c?v | c!e | !?

A syntax of a process p : Proc is as follows:

p ::= 0 | 1 | x := e
| p1 ; p2 | p1 ‖ p2 | p1 /b. p2 | b ∗ p
| 〈gi → pi〉i∈1...n

The last clause is shorthand for a list of guard-process pairs.

2.2 Behaviour

We can briefly summarise the behaviour of a Handel-C process as follows: 0 does
nothing, in zero time; 1 does nothing, but takes one clock cycle to do it; x := e
assigns the value of e into x , taking one clock cycle; (p1 ; p2) first executes p1,
and once it has terminated immediately starts p2; (p1 ‖ p2) runs both p1 and
p2 in lock-step parallel, terminating when they have both finished; (p1 /b. p2)
evaluates b and executes p1 immediately if b is True, otherwise it runs p2; and
b ∗ P tests b and if True it runs P and then repeats, otherwise it terminates.

The 〈gi → pi〉 construct (“prialt”) is an ordered sequence of guard-process
pairs. Guards are either communication actions or a default guard to be activated
if no communication guard is active. The default guard, if present, must be last.
The sequence of guards in a prialt denotes that prialt’s priority preference,
considered as relative priority — i.e. it prefers its first guard to its second, its
second to its third, and so on.

Each guard is checked against the process environment to see if it is able to
execute. If no guards are so enabled, then the prialt blocks until the next clock
cycle when it tries again. If one or more guards are enabled, then the first such
in the list is executed, and then the corresponding process is executed. An input
guard (c?x ) is enabled if there is a corresponding output guard (c!e) in some



other prialt executing at the same time, and vice versa. The default guard (!?) is
always enabled. The input (c?x ) and output (c!e) guards perform their actions
taking one clock-cycle, while the default guard (!?) acts in “zero-time”, so the
subsequent process starts execution immediately. It is this “instant” execution
of !? guards that so complicates the formal semantics of Handel-C, as discussed
extensively in [5].

2.3 Restrictions

We have a mix of parallel processes and global shared variables, so Handel-C
has a restriction which states that no variable should ever be assigned to by
two different processes during one clock cycle. It is allowable to have different
processes write to the same variable on different clock cycles. The Handel-C
language reference manual [1] states that different parallel processes generally
should not write to the same variable, but that if they do, the programmer has
a proof obligation to show that these writes never occur during the same clock
cycle.

This extends to disallowing the simultaneous writing of two different values
to the same channel — however having multiple readers of a channel at any one
time is permitted.

Another key restriction imposed by Handel-C is that during any clock-cycle,
all the relative priorities of all prialts executing during that cycle must be
consistent with one another in that no priority cycles are introduced when all
their preferences are merged.

3 Previous and Related Work

Early work on the formal semantics of Handel-C concentrated on a subset of the
language that did not contain the prialt construct [6, 7]. The approach adopted
was in the style of the “Irish School” of the VDM [8] which drew its inspiration
from the pioneering work in VDM of Dines Björner and his colleagues [9].

However it soon became clear that prialt would have to be included. It
cannot be simulated using ordinary communication and switch statements, and
it has a number of effects on the overall semantics. Also, we viewed the task of
developing a formal semantics for Handel-C as being an true exercise in domain
modelling [10, 11], as our intention was to model an existing artefact, warts and
all, rather than construct a nice simple well-behaved hardware process algebra.

A formal description of prialt resolution without consideration of default
clauses was presented in [12]. An initial denotational semantics was developed
[13] which incorporated this prialt resolution semantics. Then the prialt
model of [12] was then extended to handle default clauses properly and an op-
erational semantics for Handel-C incorporating this was developed [4, 5]. The
operational semantics had to introduce a notion of prioritised transitions in or-
der to correctly capture the behaviour of default guards. This additional notion



of priority was completely different and orthogonal to the priorities expressed
by the prialt construct.

Priority in concurrent processes is difficult to treat formally but many exam-
ples abound, in both the CSP setting [14–17]. and in the more general process
algebra areas [18–20]. The CSP treatment either fails to handle recursion, or is
too complex and general, while the more general process algebra work is closer
to what is required. Unfortunately, priority in Handel-C does not fit neatly into
the priority schemes that have been considered, as described in [20]

Other work involving formal techniques and Handel-C has been reported,
and includes the use of the Ponder policy specification language [21] as a ba-
sis for implementing firewalls [22], as well as techniques for performing behav-
ioural transformations from Haskell programs into Handel-C implementations
[23]. Beyond the scope of Handel-C, there is considerable work on using formal
techniques to develop safety-critical embedded systems, of which the languages
Esterel [24–26] and Lustre [27, 28] are two key examples.

4 Overview of prialt Semantics

We present here a brief overview of the prialt semantics presented in [5], with an
explanation of how it can be interfaced with the denotational semantics described
later on in this paper.

In any given clock cycle, there will be zero or more prialts commencing
execution. A guard is deemed to be potentially active if elsewhere there is a
complementary guard in some other prialt active during the same clock cy-
cle. The process of determining which guards, if any, become active, is called
Resolution.

In [12] resolution is viewed formally as a function Resolve that takes a set
of Prialt Requests (PriSet), and returns a pair called a Resolution (Resltn),
consisting of an Channel-Prialt Map (CPMap) and the set of prialts that have
remained blocked.

PriSet = PPrialt
CPMap = Ch → PriSet
Resltn = CPMap × PriSet

Resolve : PriSet → Resltn

A Prialt Request is simply modelled as a sequence of guards, i.e simply as the
corresponding prialt-statement with the continuation processes stripped out.
The Channel-Prialt Map identifies which channels are going to be active and
maps them to those prialts which will participate in communication over that
channel.

In order to model the semantics of prialt, we view a clock-cycle as being
composed of four phases: selection (sel); request (req); resolve (res); and action
(act). During the selection phase, flow of control decisions are taken by evaluat-
ing conditions for if-statements and while-loops. During the request phase, any



prialts which have been selected lodge their prioritised communication requests
in a central location. Once all this has occurred, the resolve phase determines
which communication requests are going to be granted. In the action phase, all
the assignment statements selected earlier, and all the communication actions
just resolved, are carried out simultaneously. The clock tick signals the end of
the action phase.

The set of prialts that are input to Resolve are those lodged centrally during
the request phase. Conceptually, resolution occurs at the transition between the
request and resolution phases and results in the two outputs as mentioned above.
During the resolution phase, the resulting channel-map and blocked prialt-sets
are examined to determine what activities will occur.

Let us consider an example involving default clauses in that manner that
causes most semantic difficulty. This example has two prialts in parallel, with
the second having a default clause which itself contains a statement that subse-
quently invokes a prialt:

〈 c!66→ 0 〉 || 〈 d !99→ 0, !?→ ( b ∗ P ; 〈c?x → 0〉 ) 〉

Let us consider the case where b happens to be false. Initially we have a situation
where there are no potentially active guards, so the first prialt blocks, while
the second immediately activates its default clause. The while-loop has a false
condition, so immediately terminates, and this introduces another prialt to the
mix. At this point the program has evolved to look like this:

〈 c!66→ 0 〉 || 〈 c?x → 0 〉

This requires us to lodge a new request, with the existing ones still in place,
and to re-perform the resolution step. As a result, channel c becomes active,
transferring value 66 across to variable x .

Prialts nested inside default clauses of other prialts may become active in the
same clock cycle as those enclosing prialts, which requires us to iterate the sel–
req–res loop several times, in any given clock cycle. Managing this micro-cycle
activity severely complicates the semantics2.

5 Semantic Framework

The “prialt-free” denotational semantics in [13], inspired by [29], was based on
the notion of “branching sequences” or trees, where non-branching sequences
denoted deterministic sequences of actions, and branching was used to model a
choice point, such as the conditions of a while-loop or if-statement.

However, this model becomes far too complex when faced with the need to
handle multiple choice points per clock-cycle, so the full semantics described here
is given in terms of sets of “typed assertion traces”. These are sets of sequences of

2 Interestingly, the underlying hardware doesn’t iterate, as it computes what is to be
active in any given clock cycle using combinatorial logic.



actions (state-transformers), each action typed according to the phase in which
it occurs (sel,req,res,act), with an assertion that indicates the conditions under
which that action (and all subsequent) may proceed.

This switch also brings the semantics more in line with that of Circus [30]
and its slotted variants [31], fitting in with plans to give a complete account of
Handel-C and hardware compilation in the UTP framework [32].

5.1 Abstraction of Action, States and Predicates

We shall now present an abstract view of typed assertion traces, where actions
(a : Act) with an action merge operator ♦ form a commutative monoid, with
the “null” action nop as identity.

Mon(Act ,♦, nop)

We the introduce an abstract notion of a state (s ∈ St) as something which can
change as a result of actions, and denote the effect of action a on state s by
4[a](s). The null action, not unexpectedly, brings about no change of state:

4 : Act → St → St 4[nop](s) = s

We need predicates over states (assertions), with true and false denoting the
everywhere true and false predicates respectively:

p ∈ Pred = St → B

We are going to capture the linkage between assertions and actions by the con-
cept of a “guarded-action” (g), which is a predicate-action pair (p, e):

g , (p, a) ∈ GA = Pred ×Act

We will frequently deal with cases where either the guard is true or the action
is nop, so we adopt the shorthands where a denotes (true, a) and p denotes
(p, nop). In particular we often refer to true as a null or void action.

We can extend the notion of action-merging to guarded actions in the obvious
way by merging the actions and taking the conjunction of the predicates:

(p1, a1) ♦ (p2, a2) =̂ (p1 ∧ p2, a1 ♦ a2)

These guarded actions are the basic building blocks for “assertion traces”, so
the next step is to describe the typing aspects.

5.2 Typed Assertion Traces

We shall view a trace as being a non-empty sequence of slots, were each slot
denotes the activity during one complete clock cycle. We allow traces to be



either finite or infinite, as this is required for the semantics of any of the loop
constructs.

τ ∈ Trc = Slot∗ ∪ Slotω

The semantics of a Handel-C program is mapped to a set of these traces, which
conform to a set of healthiness conditions to be mentioned later.

Slots have internal structure, and are divided into two components: the de-
cision actions which occur early in the clock cycle to determine the course of
action to take; and the permanent state-change actions which all occur simul-
taneously at the end of the clock cycle. The former are modelled as sequences
of “microslots” (MS ), whilst the latter can simply be represented as a single
(merged) guarded action. We shall refer to the second component as the “final
action” of the slot

s, (µ, a) ∈ Slot = MS
∗
×GA

A microslot (m) captures the actions in one cycle of selection-request-response
and hence is is a triple of guarded actions (s, q , r), where the first (s) are of type
sel, the second (q) are of type req, and the last (r) are of type res:

m, (s, q , r) ∈ MS = GA3

We expect that any microslot has at least one non-null action present.
We need to be careful how traces and slots are interpreted: In essence, a slot

where the final action is null denotes the case were the clock-tick which ends the
slot has yet to happen. As a consequence of this interpretation, only the last slot
in a trace can be “tick-free” in this manner. T

We need to be able to identify a null slot, as one with no microslots, and a
null final-action:

nils : Slot
nils =̂ (〈〉, true)

A trace in which no actions, not even a clock-tick, have occurred, is denoted by a
singleton sequence consisting of one null slot. The reason for not admitting empty
trace sequences is that it introduces ambiguity over interpreting null traces, and
complicates the definition of various concatenation operators.

We also need to identify a slot whose only action is an final-action which
denotes a clock-tick — we overload the notation ‡ to denote both such a clock-
tick action, and the corresponding slot. We also expect that merging this action
with any non-null action will result in that non-null action:

‡ : Act ‡ ♦ a = a, a 6= nop

‡ : Slot ‡ =̂ (〈〉, ‡)



Typing The typing of actions in slots and microslots is implicitly given by the
actions’ position. We can extend the notion of typing to cover both microslots
and slots themselves.

Transition types fall into four categories, with an ordering as indicated:

t ∈ TType =̂ { sel, req, res, act }
sel < req < res < act

We define the type of a microslot as the type of the least non-empty action
present:

ttypeMS : MS → TType

ttypeMS (true, true, ) =̂ res

ttypeMS (true, , ) =̂ req

ttypeMS ( , , ) =̂ sel

We define the type of a Slot as the type of the first of the microslots, if present,
otherwise it is act.

ttypeS : Slot → TType

ttypeS (〈〉, (p, )) =̂ act

ttypeS ((m : ), ) =̂ ttypeMS (m)

5.3 Trace Operators

We now describe a series of operators which can be used to build and join traces
and their building blocks.

Building with single actions The first are a series of constructors that con-
struct slots of the various types from a single guarded action and accompany-
ing transition type. We shall refer to the combination of a transition type and
guarded action as a typed action.

Given a non-act, non-void action, we wish to build the corresponding mi-
croslot:

mkm : TType→GA→MS
mkmsel(g) =̂ (g , true, true)
mkmreq(g) =̂ (true, g , true)
mkmres(g) =̂ (true, true, g)

Given a typed action we wish to build the corresponding slot, where the action
can be null only if of type act:

mks : TType→GA→ Slot
mksact(g) =̂ (〈〉, g)

mkst(g) =̂ (〈mkmt(g)〉, true)



Lifting action Merging We want to lift the action merge operators to work
with microslots.

We will want to merge a single guarded non-act action into a pre-existing
microslot:

♦ : GA× TType×MS →MS
g ♦sel (s, q , r) =̂ (g ♦ s, q , r)
g ♦req (s, q , r) =̂ (s, g ♦ q , r)
g ♦res (s, q , r) =̂ (s, q , g ♦ r)

We describe the merging of two microslots later when the parallel construct is
discussed.

Typed Cons-ing By “typed cons-ing” (:: or ::t) we mean the process of placing
a typed action at the start of an existing list of actions, at the microslot, slot or
trace level. We first consider cons-ing a non-act, non-null action into a microslot
or slots. If the action has a type greater than that of the microslot, then we have
to create a new microslot immediately prior to the given one, containing the
action. This is because “consing” means pre-pending an earlier action, so if an
action of type res (say) is being placed in front of a microslot containing sel or
req actions, then it must have occurred in an earlier microslot. This is why the
signature of the function indicates that merging a typed action with a microslot
may result in more than one microslot as a result.

:: : GA→ TType→MS →MS+

g ::t m =̂ if t > ttypeMS (m)
then 〈mkmt(g),m〉 else 〈g ♦t m〉

We can extend this to work with microslot sequences in the obvious way:

:: : GA→ TType→MS
∗
→MS

∗

g ::t 〈〉 =̂ 〈mkmt(g)〉
g ::t (m : µ) =̂ (g ::t m) a µ

We can now extend type-consing to slots and traces, in which case we can now
handle act-actions. Consing an act-action always creates a new slot at the front:

:: : GA→ TType→ Slot → Slot+

g ::act s =̂ 〈mkact(g), s〉
g ::t (µ, a) =̂ 〈(g ::t µ, a)〉

:: : GA→ TType→ Trc → Trc
g ::t (s : τ) =̂ (g ::t s) _ τ



Concatenation for Microslots We can now define a form of concatenation for
microslots (o

9) which merges the last microslot of the first sequence (ante-slot)
with the first microslot of the second (post-slot), if possible. This is possible
when no action in the ante-slot has a type greater than that of an action in
the post-slot. We first define an operator (�) taking a pair of micro-slots to a
sequence of same:

� : MS 2 →MS
∗

(s1, true, true) � (s2, q2, r2) =̂ 〈(s1 ♦ s2, q2, r2)〉
(s1, q1, true) � (true, q2, r2) =̂ 〈(s1, q1 ♦ q2, r2)〉
(s1, q1, r1) � (true, true, r2) =̂ 〈(s1, q1, r1 ♦ r2)〉

m1 � m2 =̂ 〈m1,m2〉

We then define microslot-sequence catenation using the binary merge-slot oper-
ator:

o
9 : MS

∗
×MS

∗
→MS

∗

〈〉 o
9 µ2 =̂ µ2

µ1
o
9〈〉 =̂ µ1

〈m1〉 o
9 (m2 : µ2) =̂ (m1 � m2) a µ2

(m1 : µ1) o
9 µ2 =̂ m1 : (µ1

o
9 µ2)

Consing Slots onto Traces We now consider the task of cons-ing a Slot onto
the start of a Trc in order to extend the Trc. Here, no type is specified, but
instead is inferred from the slot contents.

The only time this differs from ordinary list cons is when the trailing trace
is a singleton null slot or the slot is null or has no act action:

:: : Slot × Trc → Trc
s :: 〈nils〉 =̂ 〈s〉

nils :: τ =̂ τ

(µ, true) :: ((ν, a ′) : τ) =̂ ((µ o
9ν), a ′) : τ

s :: τ =̂ s : τ

Catenation of Traces We can now define trace catenation in terms of slot-
consing:

o
9 : Trc × Trc → Trc

〈〉 o
9 τ2 =̂ τ2

〈s〉 o
9 τ2 =̂ s :: τ2

(s1 : τ1) o
9 τ2 =̂ s1 : (τ1

o
9 τ2)

Traces are non-empty, but the first clause is needed simply to handle a base
case properly for the definition of the operator. We want the null trace to be an
identity for trace catenation, and trace catenation to be associative.



5.4 Merging traces in parallel

Merging traces in parallel is straightforward — they are merged on a slot by
slot basis, with slots merged on a micro-slot by micro-slot basis. We overload
the notation ‖ for all these forms of parallel merging, except trace parallel merge
which we denote by [][].

All these operators are associative and commutative, and the null-trace is
the identity for [][]. It is in order to get these properties that we require action
merging itself to be both associative and commutative.

Merging two microslots in parallel simply involves merging the corresponding
components:

‖ : MS ×MS →MS
(s1, q1, r1) ‖ (s2, q2, r2) =̂ (s1 ♦ s2, q1 ♦ q2, r1 ♦ r2)

Merging microslot-sequences in parallel (‖) is done on a microslot by microslot
basis, but not by merging matching pairs starting at the front of both lists, but
rather by matching the ends of the lists together with the front of the longer list
simply being copied to the result:

‖ : MS
∗
×MS

∗
→MS

∗

µ1 ‖µ2 =̂ rev((revµ1) mssaux (revµ2))
〈〉mssaux µ2 =̂ µ2

µ1 mssaux 〈〉 =̂ µ1

(m1 : µ1) mssaux (m2 : µ2) =̂ (m1 ‖m2) : (µ1 mssaux µ2)

This counterintuitive notion of parallel merge (“merge from the back”) was dis-
covered as part of work animating these semantics[33] by encoding them in
Haskell [34]. The reason for merging in this way is to ensure that all decisions
are made as late as they possibly can be made, in particular to ensure that all
the prialts involved in generating microcycles are complete before final commu-
nication resolution is done. Intuitively, this reflects how, in the real hardware
implementations of Handel-C, we are waiting for combinatorial logic to settle
before the clock edge marking the end of the cycle, and the occurrence of the
act-actions.

To parallel merge slots, we simply parallel-merge the microslots and action-
merge the actions:

‖ : Slot × Slot → Slot
(µ1, a1) ‖ (µ2, a2) =̂ (µ1 ‖µ2, a1 ♦ a2)

To merge a pair of traces we proceed on a slot-by-slot basis, and copy the longer
tail over if the traces are of different length.

[][] : Trc × Trc → Trc
〈〉 [][] τ2 =̂ τ2

τ1 [][] 〈〉 =̂ τ1

(s1 : τ1) [][] (s2 : τ2) =̂ (s1 ‖ s2) : (τ1 [][] τ2)



Unlike the microslot-sequence case, here we do merge slot-sequences from the
front.

5.5 Framework Summary

We have defined a notion of guarded actions, and microslots capturing sequences
of sel, req and res actions, as well as slots which put these before a clock-cycle
terminating action action. We have defined traces as non-empty lists of such
slots, with all but the last slot obliged to have an action action, and defined
trace concatenation (o

9) and parallel merge ([][]) operators. Both have monoid
properties, with the null trace as identity, and [][] also being commutative.

6 Execution State

We now turn our attention to the actions of the previous section, and elaborate
how these are in fact state-transformers. To this end, we first need to understand
what is meant by the state of a Handel-C program.

6.1 Environments

We follow the classical approach for imperative languages in that the state is
an “environment”: a mapping from identifiers to values. We differ in that while
some identifiers denote program variables, others have special meaning and cor-
respond to internal processing carried out during a clock-cycle, largely to do
with processing prialt communication requests.

We define identifiers (Id) to be either variable names (Var) or one of four
special identifiers τ,<, γ or B , not present in Var . We define a value space (Val)
to contain integers, booleans and an error value (?), and then define a datum
type as being either a value, a function Fun, or one of the three types associated
with prialt resolution, namely Resltn, CPMap and PriSet :

i ∈ Id =̂ Var + { τ,<, γ,B }
Val =̂ Z + B + { ? }

f ∈ Fun =̂ Var →Val
d ∈ Datum =̂ Val + Fun + Resltn + CPMap + PriSet

Although we have used disjoint union or sum above, in the sequel we do not
explicitly show the relevant injections, so that we interpret a value x : Z as also
being a value x : Val , or even x : Datum, rather than writing the more pedantic
but verbose forms of inj1(x ) : Val and inj1(inj1(x )) : Datum.

We define an environment ρ as a mapping from identifiers to data, subject
to the proviso that variables map only to values, < maps only to Resltns, and
γ and B map respectively to the CPMap and PriGrp components of ρ(<):

ρ ∈ Env =̂ Id →Datum



We denote the updating of a map ρ so that i now maps to d by ρ † {i 7→ d}
The identifer τ is used to denote the clock-tick or clock-cycle count, so it

is best viewed as mapping to an integer—however the associated value and its
type is simply immaterial, as will become apparent later on.

Data items of type Fun do not form part of the state, but are used as a
technical device to capture the fact that expressions in channel output guards
are evaluated when that guard goes “live”, if ever.

Expression evaluation w.r.t an environment is defined in the normal way, and
returns a result of type Datum that is not itself of type Fun:

E : Exp → Env →Datum
E [[e]]ρ =̂ “standard” expression evaluation. . .

Note however, that the partial application E [[e]], where e denotes a value of type
Val , can be interpreted as a Datum value result of (sub-)type Fun.

6.2 Static State

The “static state” of a Handel-C program is that part of the state which persists
across clock-cycle boundaries, and its evolution over those time-slots is what
constitutes the observable behaviour of a Handel-C program.

For any Handel-C program, we simply identify all the variables used, in
assignments, expressions, and channel inputs. We then tailor the environment
so that its domain contains precisely those variables.

6.3 Dynamic State

The dynamic state is that which only exists within one clock cycle, and is effec-
tively “zeroed” at every clock tick. It contains information about communication
requests and is that part of the environment accessed by the identifiers <, γ and
B .

At the start of each clock cycle, these are initialised to be empty:

ρ(γ) = θ ρ(B) = ∅ ρ(<) = (θ, ∅)

6.4 Actions for Handel-C

We want our actions to be state-transformers, that is functions from state to
state, and we need to define the null action (nop), as well as explaining how
actions merge (♦).

Actions Formally our actions are functions mapping environments into envi-
ronments, and the null action is simply the identity function on environments.
However, we want to capture the notion of actions that change part of the state,
and to be able to merge these, and detect if they are both trying to modify the



same variable. With the action model as just described, this is hard to do, so
we adopt an alternative model, were we view an action as simply being a partial
environment which records the part that changes. The null action is simply the
null map (θ), and two actions are merged by simply merging the maps together.
Any variable conflict is recognised because the variable occurs in the domain of
both maps — in this case we map the value to ? to denote the (runtime) error.

Evt =̂ Env
nop =̂ θ

e1 ♦ e2 =̂ e1 ∪ e2,

if dom e1 ∩ dom e1 = ∅
{v 7→ e1} ♦ {v 7→ e2} = {v 7→?}

The one exception to map conflicts has to do with the way the communication
parts are treated (<, γ,B). Here we find that the basic action involves lodging
a prialt as a request, into the B component, which is a set of such prialts.
Multiple references to B are resolved by applying set union (remember that P1

and P2 are of type PriSet):

{B 7→ P1} ♦ {B 7→ P2} = {B 7→ P1 ∪ P2}

The clock-tick action is simply represented by an environment where the sole
identifer in its domain is τ , and the datum to which it maps is immaterial:

‡ : Evt
‡ =̂ {τ 7→?}

State Change We use such partial maps to change the state by simply over-
riding the state with a mapping in which any expressions (as Fun in Datum)
have been first evaluated w.r.t that state:

St =̂ Env
4(e1)ρ =̂ ρ † E ′ρ(e1)

E ′ρ{v 7→ f } =̂ {v 7→ f (ρ)}

It is this model of actions which motivated the particular form of the abstract
action model used when typed assertion traces where described previously, and
why in that model we used 4, rather than simply viewing actions there directly
as state-transformers themselves.

State Predicates Any boolean-valued expression in Handel-C provides us with
a predicate, simply by evaluating that expression against the state environment
in the usual way.

Pred =̂ Exp, boolean-valued
e(ρ) =̂ E [[e]]ρ



6.5 Fixpoints

We define an ordering � on traces, with τ1 � τ2 if τ1 is a prefix of τ2. We note
that 〈nils〉 � τ for any τ . A set of traces has a least upper bound w.r.t � if all the
traces are prefixes of some single (longest) trace, which is the shortest possible
such trace. For typed assertion traces we say that τ1 � τ2 if there exists τ3 such
that τ1

o
9 τ3 = τ2.

We extend this to an ordering v over sets of traces by saying that S1 v S2

if for every τ1 in S1 there is a τ2 in S2 such that τ1 � τ2. The least element in
this ordering is the set { 〈nils〉 }. Again a notion of least upper bound (

⊔
) can

be defined w.r.t v.
Our semantic domain is therefore one of trace-sets, ordered by v, and our

semantic definitions produce directed sets. We therefore handle recursion by
taking the least fixed point w.r.t v, and we can compute this as

fixL • F (L) =
⊔
i∈N

{F i{ 〈nils〉 } }

7 Handel-C Denotational Semantics

We are now in a position to give the denotational semantics of Handel-C. First we
need to introduce some shorthands to manage the complexity of the resulting
expressions. Given a binary operator ∗ over values s and t of some type we
assume the obvious extensions to act between sets S and T over the type, or
between elements and sets as follows:

S ∗ T =̂ { s ∗ t | s ∈ S ∧ t ∈ T }
s ∗ T =̂ { s ∗ t | t ∈ T }

The semantics of a Handel-C process is given as a set of typed assertion traces,
subject to the following healthiness conditions: (1) Traces are maximal: if a
trace is present, then none of its proper prefixes are; (2) Mutual Exclusivity: if
two traces differ, then the pair of guarded actions which first distinguish them
must have mutually exclusive predicates, i.e ones that are never true in the
same environment (3) Exhaustivness: given all traces in the set with a common
prefix, then all the guard predicates of the distinguishing actions must exhaust all
possibilities, ie. for any environment, at least one (and only one) will return true.
Conditions (2) and (3) are weakened slightly when we consider the semantics of
prialt later on.



We can now describe the semantics of all constructs except prialt in a
straightforward manner as follows,

[[ ]] : Prog →PTrc
[[0]] =̂ { 〈nils〉 }
[[1]] =̂ { 〈‡〉 }

[[x := e]] =̂ { 〈(〈〉, {x 7→ e})〉 }
[[p; q ]] =̂ [[p]] o

9 [[q ]]
[[p ‖ q ]] =̂ [[p]] [][] [[q ]]

[[p /b. q ]] =̂ (b ::sel [[p]]) ∪ (¬ b ::sel [[q ]])
[[b ∗ p]] =̂ fixL • { 〈mksel(¬b)〉 } ∪ (b ::sel ([[p]] o

9 L))

0, 1 and assignment have a single singleton trace as semantics, being respectively
the empty, clock-tick and single-variable update slots. Sequential and parallel
composition simply combine all their traces with the appropriate trace operator.
The conditional construct prefixes the traces of the “then” outcome with the
condition as a guard predicate, while the traces of the “else” outcome have the
negation of that predicate prefixed instead. It is with this construct that multiple
traces are introduced, and were we ensure that the exclusivity and exhaustiveness
healthiness conditions are met. The while-loop is given a fixpoint semantics, as
is standard for such constructs. In effect it either immediately terminates, if the
guard is false, or else the guard is true, and it then behaves like the loop-body
sequentially composed with the loop itself. Just like the conditional construct,
it also ensures the exclusivity and exhaustiveness criteria are met.

7.1 Extending the Language

The semantics of prialt is best given by breaking the construct down into
simpler components, which mainly correspond to the various phases in which
prialt is active,namely req, res and act. We now introduce some extension to
the language to facilitate this —note that these extensions exists solely in order
to elucidate the semantics, and are not available for general use by the Handel-C
programmer.

We extend the expression syntax to include three special forms — a prialt-
waiting predicate (w〈gi〉), an active guard expression (a〈gi〉), and a channel data
expression (δ(c)):

e ∈ Exp = . . . | w〈gi〉 | a〈gi〉 | δ(c)

The waiting predicate takes a prialt-request (guard-list) as argument, and re-
turns true if resolution has determined that that prialt is blocked. It is evalu-
ated, after the req phase, by looking at the B component of the state:

E [[w〈gi〉]]ρ =̂ 〈gi〉 ∈ ρ(B)



The active guard expression takes a prialt-request as argument, and returns
the index (i ∈ 1 . . .n) of the guard which is going to be active in this clock-cycle.
It is only defined when w〈gi〉 is false, and looks up the channel-prialt map

E [[a〈gi〉]]ρ =̂ min j
where ∃ c • 〈gi〉 ∈ ρ(γ)(c)

∧ channel(gj ) = c

Here channel returns the channel associated with a guard.
The channel data expression δ(c) returns the data expression associated with

an active channel — this information can be extracted from the channel-prialt
map component, as detailed in [5].

We extend the program syntax to include three new statements — a prialt-
request statement (rq〈gi〉), a prialt-wait statement (wait〈gi〉), and a multi-way
conditional branch (or case-statement):

p ∈ Prog ::= . . . | rq〈gi〉 | wait〈gi〉 | e I [pi ]

The prialt-request statement simply lodges its guard-list argument into the
input PriSet for resolution. In the semantics we use the B component of the
state to hold both the prialts input to resolution (during the req phase) and the
blocked-prialt result of resolution (available during the res and act phases).

The prialt-wait statement asks if its prialt argument is blocked. If it is, it
then waits one clock cycle, then re-submits the corresponding prialt-request,
before repeating itself. If the prialt is not blocked, it terminates immediately.

The case-statement e I [pi ] evaluates expression e, whose value must lie in
the range 1 . . .n. This value is used to select the process to execute.

We also define a function on guards which gives the underlying action as an
equivalent statement:

act() : Grd → Prog
act(c!e) =̂ 1

act(c?v) =̂ v := δ(c)
act(!?) =̂ 0

We give prialt 〈gi → pi〉 a semantics by translating it to:

rq〈gi〉; wait〈gi〉; a〈gi〉 I [act(gi); pi ]

This captures the notion that a prialt acts in three stages: (i) it submits a
request (rq〈gi〉); (ii) it waits until it becomes active, re-submitting the request
on every clock cycle (wait〈gi〉); and (iii) once waiting is over, selects and executes
the active guard and corresponding process (a〈gi〉 I [act(gi) ; pi ]).



We can now give the semantics of the additional constructs:

[[rq〈gi〉]] =̂ { 〈mkreq({B 7→ { 〈gi〉 }})〉 }
[[wait〈gi〉]] =̂ fixW • { 〈mkres(¬w〈gi〉)〉 }

∪
(w〈gi〉 ::act ([[rq〈gi〉]] o

9 W )

[[a〈gi〉 I [pi ]]] =̂
⋃
i

{ (a〈gi〉 = i) ::res [[pi ]] }

The request statement is simply an update of the state’s “B ’ component, tagged
as occurring during the req phase. The case-statement simply prepends a guarded
action asserting that e = i to the traces associated with process pi , such a choice
being made during the res phase.

The wait〈gi〉 statement is a looping construct, so it has a fixpoint defin-
ition as expected. It would seem obvious that wait〈gi〉 should be the same as
w〈gi〉∗(1; rq〈gi〉), but it is necessary to keep it separate, because not only do the
true and false branches of the wait statement not occur in the sel phase, but in
fact they occur in different phases: the terminating guarded action (¬ w〈gi〉) oc-
curs during the res phase; while the continuation guarded action (w〈gi〉) occurs
during the act phase.

The reason for this is the same as that encountered in the operational seman-
tics, namely that the decision to end waiting can be made as soon as a prialt
becomes unblocked (during some some res phase), but the decision to wait until
the next clock cycle to try again needs to be deferred until no more sel-req-res
micro-cycles can occur, i.e. once the act phase has been reached. This is because
a subsequent round of request and resolution, caused by a prialt in some default
guard, may cause a blocked prialt to become unblocked. The converse never
happens: once a prialt is unblocked in one microcycle, it can never become
blocked again subsequently.

This means that the Exhaustiveness and Exclusivity healthiness conditions
aren’t quite adhered to at this point, as the conditions ¬ w〈gi〉 and w〈gi〉 do
not occur at the same point in the traces. In fact the latter is delayed until the
act phase. The weakening that we allow is that this works because while the act
condition occurs later in the trace, no events of any significance occur in that
trace from the point in the res phase where w〈gi〉 could return false, up to the
act point where the predicate can return true.

7.2 Examples

We now present a few small examples simply to show the semantics at work.
In order to keep expressions readable and manageable, we introduce the

following shorthand: (i) for (〈〉, x 7→ e) we simply write {x 7→ e}; (ii) and
for mksreq({B 7→ { 〈gi〉 }}) we use req〈gi〉. Rather than showing the slot and
microcycle structure explicitly, we simply list the actions separated by commas,
and use ‡ to to mark the slot boundaries (i.e clock ticks). So

〈 (〈〉, y 7→ f ), (〈((b), true, true)〉, x 7→ e) 〉



becomes 〈{y 7→ f } ‡ b, {x 7→ e}〉

Assignment, Conditional and Sequential Composition If we follow an
assignment by a conditional as follows:

x := y + z ; y := z /(x > 0). z := y

then calculating this through with the semantics gives:

[[x := y + z ; y := z /(x > 0). z := y ]]
= { 〈{x 7→ y + z} ‡ x > 0, {y 7→ z}〉,

〈{x 7→ y + z} ‡ x ≤ 0, {z 7→ y}〉 }

We see clearly the same starting action in both traces, and then a choice based
on the sign of x guarding the subsequent behaviour, each covered by one of the
two traces.

Parallel Assignment We can swap two variables in one clock cycle:

[[x := y ‖ y := x ]] = { {x 7→ y , y 7→ x} }

This works because the expressions are evaluated first during the clock cycle,
and the variables are updated simultaneously as the clock ticks. However, if
we attempt to simultaneously assign two different values to one variable, the
semantics flags this as an error

[[x := e1 ‖ x := e2]] = { {x 7→?} }

While Loop If we consider a simply busy waiting loop (b will hopefully even-
tually be set by some other process), then we calculate the semantics as:

[[b ∗ 1]] =
⊔
{F i{ nils } | i ∈ N }

where F (L) = { 〈¬ b〉 } ∪ ( (b, ‡) :: L) )

Evaluating this leads to the result that the set of traces are of the form:

[[b ∗ 1]] = { 〈¬ b〉,
〈b, ‡; ¬ b〉,
〈b, ‡; b, ‡; ¬ b〉,
...
〈b, ‡; . . . ; b, ‡︸ ︷︷ ︸

i−1 times

; ¬ b〉,

...
〈b, ‡; . . . ; b, ‡ . . .︸ ︷︷ ︸

∞ times

〉 }



We have finite traces which correspond to zero or more iterations before the
condition becomes true, and one infinite trace which captures the situation were
b is always false —this is why we need to admit infinite traces in our semantic
model.

8 Conclusions and Future Work

We have presented a denotational semantics for Handel-C as sets of typed asser-
tion traces, which captures all the key behaviour of the language, with particular
emphasis on the proper treatment of default clauses in prialt statements. We
need to show that all this semantics describes the same language as does the op-
erational semantics. The real goal is to use the denotational semantics to verify a
series of algebraic laws for Handel-C, which would form the basis for a practical
system for formal reasoning about such programs. We also intended to extend
this to cover the notion of refinement in a Handel-C setting, linking the language
to specification notations such as CSP [35] or Circus [30].

Recently we have also published a “hardware semantics” for Handel-C [36],
which will allow us to explore transformations that investigate the trade-off
between the number of clock-cycles required to complete a task, and the length
of each cycle, which depends on the complexity of the combinatorial logic that
is generated. It is here that the well-known work of Zhou Chaochen on duration
calculus [37] and his work on modelling synchronous circuits at switch level [38]
will provide useful tools and insight for this work.

Finally, we hope to explore the embedding of these results into the UTP
framework [32], as a variant of Circus [30]. This work is being funded as a three-
year project by Science Foundation Ireland.
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