
Formalising Flash Memory: First Steps

Andrew Butterfield
School of Computer Science and Statistics

Trinity College Dublin
Dublin 2, Ireland

Andrew.Butterfield@cs.tcd.ie

Jim Woodcock
Department of Computer Science

University of York
Heslington, York, YO10 5DD, UK

Jim.Woodcock@cs.york.ac.uk

Abstract

We present first steps in the construction of formal
models of NAND Flash memory, based on a recently
emerged open standard for such devices. The model is
at a level of abstraction that captures the internal ar-
chitecture of such a device, as well as the commands
that are used to operate it. The model is intended as a
key step in a plan to develop a verified filestore system,
by providing a description of the hardware devices that
would be used in it implementation.

1. Introduction

The “Grand Challenge in Computing” [4] on Veri-
fied Software [17], has a stream focussing on mission-
critical filestores, such as may be required for space-
probe missions [7]. Of particular interest are filestores
based on the relatively recent NAND Flash Memory
technology, now very popular in portable datastorage
devices such a MP3 players and datakeys. Flash mem-
ory is seen as ideal for these kinds of missions as it has
good physical handling properties, being non-volatile,
shock-resistant and capable of operating under a wide
range of pressures and temperatures. It also has the vary
valuable property, for space-borne vehicles, of having
no moving, and in particular, no rotating parts.

There are two types of Flash Memory: (i) NOR
Flash Memory, which can be programmed (written) at
byte level, but must be erased at block level, is rela-
tively slow, but suits random access; and (ii) NAND
Flash Memory with higher speed, but where program-
ming must be done at the page level, making it a se-
quential access device. The former suits non-volatile
core-memory, whilst the latter is suited to implement-
ing data-stores and file-systems.

This paper describes an initial formal model of
NAND Flash Memory, based on the recently released
specification of same from the “Open NAND Flash In-
terface (ONFI)” consortium [5]. This specification cov-
ers such details as the device packaging pin-outs, elec-
trical and timing characteristics of the device pins, tim-
ing diagrams for the operations, that are all beyond the
scope of this paper. This paper focusses on the struc-
tural aspects of the devices, i.e, their internal organi-
sation, and an abstract view of the behaviour of those
operations deemed mandatory by the standard.

It should also be noted that the model presented in
this paper is not an abstract specification of a system
to be developed, as is the “traditional” role of a formal
specification, with a view to avoiding “implementation
bias”, in order to allow a developer freedom to seek the
best solution. Instead we are modelling an existing arte-
fact (the ONFI specification) and the real devices that
already exist or that are likely to come into existence in
the near future. As a consequence there will be clear
examples of implementation bias in this model.

We briefly describe related work in §2, and then
in §3 we describe the internal organisation of NAND
Flash devices, while in §4 we describe the operations
that are mandatory according to [5]. We finish (§5) with
a discission of the future progression of this work. We
use the Z notation [15], [18] in this paper.

2. Related Work

There is no work on the formal modelling of
NAND Flash devices known to the authors, but there
has been a considerable body of work done on formal
models of file systems, and the technical, usage and re-
liability aspects of NAND Flash devices.

Formal aspects of file systems have covered spec-
ifications [13, 12, 3] and approaches towards their ver-

ification [2]. Some recent work has also looked at ap-
plying model-checking techniques to entire file systems
[20], with considerable success.

There has been a wide range of material published
regarding the implementation of file systems on NAND
Flash memory, most of which utilise some form of log-
structuring [6, 19, 10, 9]. Of interest to a potential
space-borne application are techniques that use NAND
flash to implement low-power file caches for mobile de-
vices [11, 8]. A key feature of these schemes is the need
to cope with the accumulation of errors over time, the
mechanism of which is very well understood [1, 14]. Of
particular interest is a recent patent application filed by
Microsoft for a controller that hides the faults behind
an interface that looks like an ideal perfect NAND flash
device [16].

3. Flash Memory Structure

3.1. Memory Organisation

The basic data unit in a Flash memory is either a
Byte (8 bits), or a Word (16 bits), depending on the type
of device.

Bit == {0,1}
Byte == {s : seqBit | #s = 8}
Word == {s : seqBit | #s = 16}

We are going to abstract away from this little detail, and
assume a given type called Data that denotes the basic
information unit:

[Data]

A page is an array of data items, consisting of a main
page, plus some “spare” locations. This is the basic unit
for writing, or programming. The spare locations are
designed to assist with error detection and correction.
In Z we model this as a schema as there is a link be-
tween the page count and the column address type used
to access items on such a page. The page count is not a
global constant, but is in fact part of the (fixed) state of
an ONFI device that characterises it (see §4.3 for more
details). The page size must be a power of two, and the
column address bits must be sufficient to address both
the mainpage as well as the spare area.

PageDim
pageaddrsize,coladdrsize : N1
pagecount,spare : N1
ColAddr : FN
Page : P(FN× Data)

pagecount = 2pageaddrsize

pagecount + spare≤ 2coladdrsize

ColAddr = 0 . .pagecount + spare−1
Page = ColAddr → Data

A block is a collection of pages, and is the smallest unit
to which an erase operation can be applied. The number
of pages per block is constrained to a multiple of 32.

BlockDim
pagesperblock : N1
PageAddr : FN
Block : P(FN× Page)

PageAddr == 0 . .pagesperblock−1
∃n : N1 • pagesperblock = 32∗n
Block = PageAddr → Page

A logical unit (LUN) is the smallest sub-entity within
a device that is capable of operating independently. It
comprises a collection of blocks, along with at least one
page-register and a status register. The page-registers
are used as temporary locations while data is being
transferred to and from the LUN. For present purposes
we assume a single page-register. We define a LUN
schema as follows (leaving the details of the status reg-
ister to follow):

LUN
PageDim
BlockDim
blocksperLUN : N1
SR : Status
PR : Page
BlkAddr : FN
blks : BlkAddr → Block

BlkAddr = 0 . .blocksperLUN−1

The status register has 8 bits, of which 5 bits currently
have defined meanings. Two of these (FAILC, ARDY)
are out of the scope of the current model leaving the
following three to be considered:

FAIL Set if a program or erase operation failed.

RDY Set when the LUN is ready to perform a com-
mand

WP Write-protect flag.

Note that the FAIL flag is only valid when RDY is being
asserted, while WP is always valid.

Flag ::= fail | rdy | wp
Status == PFlag
validStatus == {s : PFlag | fail ∈ s⇒ rdy ∈ s}

The power-up status is that the device is not ready and
is write-protected. Once reset (power-up or command)
is complete, then the status becomes ready and write
protected.

A target, within a device, is the smallest unit that
can communicate independently off-chip. It is made of
of one or more logical units;

LUNDim
LUNspertarget : N1
LUNAddr : FN
Target : P(FN× LUN)

LUNAddr = 0 . .LUNspertarget−1
Target == LUNAddr → LUN

A device (single NAND Flash chip) encapsulates a
number of Targets, numbered from 1 upwards:

TargetDim
targetsperdevice : N1TgtId : FN1
Device : P(FN1 × Target)

TgtId = 1 . . targetsperdevice
Device = TgtId → Target

We can then define the state of an ONFI-compliant
NAND Flash Memory device as the aggregation of the
definitions and constraints introduced to date:

NANDFlash
PageDim
BlockDim
LUNDim
TargetDim
device : Device
maxbad : N

The manufacturer provides a guarantee regarding how
many blocks will be good in a shipped device, as cap-
tured by variable maxbad.

3.2. Memory Addressing

The address data sent into a device conceptually
splits into two parts, the row and column addresses. The
column address corresponds to an index into a page,

while the row address identifies which page is currently
being accessed. The row address is itself obtained by
concatenating the LUN, Block and Page addresses in
that order:

RowAddr == (LUNAddr × BlkAddr)× PageAddr
Address == RowAddr × ColAddr

The target under consideration is identified by specific
pins on the device, rather than by any address bits.

3.3. Device Initial State

When shipped from the factory, a device will be
completely erased (all logic ‘1’s). The only exception
to this is for those blocks identified as bad at manufac-
ture time. These blocks will have zeros programmed
somewhere into the spare parts of either their first or
last pages.

erased,zeroed : Data
erasedBlk : Block

erased 6= zeroed
∀p : PageAddr; c : ColAddr •

erasedBlk(p)(c) = erased

ShipFlash
∆NANDFlash
quality? : N
badblocks? : F(TgtId × LUNAddr × BlkAddr)

#badblocks?≤ maxbad′
maxbad′ = quality?
∀ t : TgtId; ` : LUNAddr; b : BlkAddr •

if (t, `,b) ∈ badblocks?
then defectMarked(device′, t, `,b)
else (device′(t)(`)).blks(b) = erasedBlk

A defective page is indicated by having a zeroed data
item somewhere in the spare area of its first or last page:

defectMarked(dev, t, l,b) =
∃p : PageAddr; c : ColAddr •

(p = 0 ∨
p = pagesperblock−1)

∧ c≥ pagecount
∧ ((dev(t)(l)).blks(b)(p)(c)) = zeroed

The state of the device on-power up is captured in this
model by the Reset Operation (see §4.1).

3.4. Structure Summary

The model as presented matches very closely the
levels of hierarchy described in the ONFI specification,

Read Change Read Column
Page Program Change Write Column
Read Status Block Erase
Read ID Read Parameter Page
Reset Write Protect

Figure 1. ONFI Mandatory Operations

and it may appear: that (i) this is hierarchy for hierar-
chy’s sake; and (ii) this is at too low a level for for-
mal modelling. Nevertheless, each step of the hierarchy
captures a distinct change in how the device is accessed
and operated, and awareness of these distinctions is im-
portant when developing systems where performance is
important. The ONFI specification also gives descrip-
tions of finite state machines (FSMs) that capture the
behaviour of targets and LUNs, viewing these as sep-
arate machines communicating with one another. By
capturing the target/LUN distinct at this level, we fa-
cilitate future work in showing that the FSM view is a
refinement of this one. At the level of this model, the
only real complexity is the nesting of the various maps.
This is one example of the implementation bias alluded
to in the introduction.

4. Flash Memory Operations

Adopting the terminology of [5], we use the term
device to refer to the NAND Flash memory under con-
sideration, and the term host to refer to the system in
which it is deployed. We also only consider those op-
erations that are deemed mandatory by the specification
(Fig. 1). It should be noted that the ONFI specification
does not consider Write Protect to be an “operation”,
insofar as it is not listed in the “Command Set” table [5,
Table 14, p39]. However, it can be invoked/revoked by
a signal transition on a target-specific device pin when
no other command is executing on the device. We shall
treat this as a (mandatory) operation.

We shall conceptually divide the operations into
two groups: simple, that involve the transfer of a small
fixed amount of information; and complex, that require
the transfer of an arbitrary amount of data. At this level
of abstraction the difference is moot, but the distinc-
tion captures the fact that the complex operations can in
principle be interleaved with each other and with certain
simple operations. The complex operations are Read,
Page Program and Read Parameter Page.

The various operations work at different levels, de-
vice, target, LUN, block or page. In this paper we de-
scribe the operations at the appropriate level of granu-
larity, and then rely on the concept of promotion [18,
Chp. 13] to lift these to the device level. We shall not

give details of the promotion.

4.1. Reset Operation

The reset operation simply puts the device into the
state it is in immediately after power-up. As NAND
Flash is non-volatile memory, this does not mean that
any data is altered or lost. At this level of abstraction
the only change is the setting of status flags to indicate
readiness and write-protection for all targets.

Reset
∆NANDFlash

∀ t ∈ TgtId; ` ∈ LUNAddr •
(device′(t)(`)).SR = {RDY,WP}

∧ (device′(t)(`)).PR = (device(t)(`)).PR
∧ (device′(t)(`)).blks = (device(t)(`)).blks

4.2. Read ID Operation

There are two forms of identifier that can be read
from an ONFI-compliant device. The first is the manu-
facturers own JEDEC1and device identifiers, which we
model as given types:

[JEDEC] [DevId]

The second is the ONFI signature that confirms the de-
vice is compliant.

ONFI = 〈79,78,70,73〉

The operation has an argument that specifies which
identifier form is required:

IdType ::= onfisig | jedecid

We model the operation as having as input a
boolean that if true requests the ONFI signature:

ReadId
ΞNANDFlash
idtype? : IdType
onfi! : N4

jedec! : JEDEC
devid! : DevId

idtype? = onfisig⇒ onfi! = ONFI

We leave this very underspecified, simply asserting
what the outcome is if the ONFI signature is requested.

The ONFI specification defines a broad family or
NAND Flash Devices, with a common packaging and

1Joint Electron Device Engineering Council

pin-out for all. A key feature of this standard is that it
allows for the swapping of one device for another in a
host, even if the replacement device has different pa-
rameters such as page, block-size, or even number of
targets. The specification describes a number of pro-
cedures, both at the hardware and operating level for a
host upon power-up to interrogate the device in order to
see exactly what its parameters are.

The first part of this process simply involves a Re-
set followed by successive Read Id operations, starting
with target 1 and proceeding through increasing target-
ids until the operation fails to return the valid ONFI sig-
nature. This establishes the number of targets present.

4.3. Read Parameter Page Operation

Once the targets in a device are known, then the
host needs to establish the parameters associated with
each target. This is done by performing a read of the pa-
rameter page [5, pp42–52], which is always 256 bytes
long, with a format common to all ONFI devices. The
last two bytes are a cyclic redundancy checksum (CRC),
which are used to ensure no error occurred when read-
ing the page.

CRC ::= crcok | crcfail

Will will only model those parts of the parameter
page that have relevance at the level of abstraction we
have been using for this model. Essentially this com-
prises those parameters to do with page and block sizes
and related dimensions.

ParameterPage
bytesPerPage,sparePerPage : N1
pagesPerBlock : N1
blocksPerLUN,maxBadPerLUN : N1

There are multiple redundant copies of the parameter
page, and in the event of CRC errors, these are read in
succession until it is possible to reconstruct the page.
The input to the operation is the number of the para-
meter page, starting from zero. The output is either an
error indication (CRC failed) or a valid parameter page.
We first model the case of a CRC failure:

ReadParameterPageFail
∆NANDFlash
pno? : N
crc! : CRC
parpage! : ParameterPage

crc! = crcfail

Next we describe a successful read, in which case the
page will correctly describe the parameters of the de-
vice:

ReadParameterPageOK
∆NANDFlash
pno? : N
crc! : CRC
parpage! : ParameterPage

crc! = crcok
parpage!.bytesPerPage = pagecount
parpage!.sparePerPage = spare
parpage!.pagesPerBlock = pagesperblock
parpage!.blocksPerLUN = blocksperLUN
parpage!.maxBadPerLUN = maxbad

We have implicitly assumed in this example that Data is
the same as Byte. We then define the whole operation as
the non-deterministic choice between success or falure:

ReadParameterPage =
ReadParameterPageFail
∨ ReadParameterPageOK

4.4. Write Protect Operation

We model the Write Protect operation as a com-
mand that sets the target WP flags according to a
boolean input:

WriteProtect
tgt, tgt′ : Target
wp? : B

∀` : LUNAddr •
(tgt′(`)).SR

= setWP(wp?,(tgt(`)).SR)
∧ (tgt′(`)).PR = (tgt(`)).PR
∧ (tgt′(`)).blks = (tgt(`)).blks

Here the setWp function sets the Status flag according
to the boolean input:

setWP(wp?,status)
= if wp? then status∪{wp?}

else status\{wp?}

4.5. Page Program Operation

The page is declared as the basic unit of program-
ming (writing), but we will describe the operation at the
LUN level, because the page-register plays an impor-
tant role. This is because programming has two main

phases, upload and store2. During the upload phase, the
command to program is issued to the device, along with
the data, which is loaded into the page register associ-
ated with the LUN. In the store phase, the data is trans-
ferred into the page identified by the row address. This
two-phase operation allows the interleaving of opera-
tions between different LUNs, as one can be uploading,
whilst the other is storing. At the level of abstraction
of this model, we view all operations as atomic, effec-
tively defining their overall effect, so we cannot model
interleaving directly. These aspects of NAND Flash be-
haviour, important for performance reasons, are left for
more detailed future modelling work.

Given that the page is “the smallest addressable
unit for read and program operations.” [5, §1.3.1.9, p2],
it may a matter of puzzlement as to why any column ad-
dresses exist, as these identify data units within a page.
The resolution of this conflict lies in the fact that these
devices allow the programming of part of a page, by
supplying a starting column address, and just the data
that is to be changed. This obviates the need to send
page data consisting largely of blanks if we are only
programming a few data items. Clearly the amount
of data supplied must fit into a single page, plus the
spare data area, given the starting address. Other pre-
conditions for this operation is that the LUN’s status
indicated ready, and the LUN is not write protected.

First, we describe a successful page program oper-
ation:

PageProgramOK
∆LUN
b? : BlkAddr
p? : PageAddr
c? : ColAddr
data? : seqData

rdy ∈ SR
wp /∈ SR
c?+#data? < pagecount + spare
SR′ = {rdy}
PR′ = overwrite(PR,c?,data?)
blks′ = blks⊕{b? 7→ (blks(b?)⊕{p? 7→ PR′})}

We have introduced a function overwrite that captures
the changes in a page where data is overlaid at a given
starting address:

overwrite : Page× ColAddr × seqData→ Page

overwrite(p,c,d)
= ({0 . . c−1} » p)ad

a ({c+#d . .pagecount + spare−1} » p)

2Our terminology, not ONFI’s

However, a program operation may also fail, in a man-
ner detectable by the device, in which case the status
records this fact, and we assume the contents of both
the page register and target page are now undefined (and
most likely also different):

PageProgramFail
∆LUN
b? : BlkAddr
p? : PageAddr
c? : ColAddr
data? : seqData

rdy ∈ SR
wp /∈ SR
c?+#data? < pagecount + spare
SR′ = {rdy, fail}
∃garbage : Page • PR′ = garbage
∃ junk : Page • blks′

= blks(?b)⊕
({b? 7→ blks(b?)⊕{p? 7→ junk})}

The page program operation is then modelled as the
non-deterministic choice between these two:

PageProgram
= PageProgramOK ∨ PageProgramFail

4.6. Read Status Operation

The Page Program operation does not return a suc-
cess/fail indicator as an output, but rather signals it by
setting a status register bit. This requires the host to
interrogate the device to determine the contents of this
register in order to establish if the programming was
successful. The Read Status operation however does not
specify a LUN, but only identifies the target in question.
What is returned is an amalgamation of the individual
LUN status registers within the designated target:

ReadStatus
ΞNANDFlash
t? : TgtId
status! : Status

(let ss == {` : LUNAddr • device(t?)(`).SR}
• status! = statusmerge(ss))

The merged status records rdy if all the individual ones
do, and reports fail in the event that any LUN has failed.
However the ONFI document [5] is unclear at this point,
as it states (p56) that the value of the FAIL bit is only
valid when RDY is asserted, but we are also told (p54)
that the reported value of FAIL is the logical-or of all

the individual FAIL bits. In order to maintain the invari-
ant for status registers, we only assert fail in all LUNs
report ready an at least one reports fail:

statusmerge : PStatus→ Status

rdy ∈ statusmerge(ss)⇔ rdy ∈⋂
ss

fail ∈ statusmerge(ss)⇔ fail ∈⋃
ss

4.7. Change Write Column Operation

Just as the page program operation facilitates writ-
ing a small part of a page, as described above, the ONFI
specification also defines a related operation that assist
when we want to write a number of small fragments to
a page. The operation called Change Write Column is
a way of supplying a fresh column address and data to
an existing page program operation, without incurring
the full overhead of issuing a fresh Page Program com-
mand, plus all the row address information.

We cannot capture this distinction at the level of
abstraction in this model, where it is simply modelled as
another Page Program operation to the same page that
has just been programmed.

4.8. Read Operation

A Read operation is similar in many respects to a
program operation, except for the direction of informa-
tion flow, with a retrieve phase where data is fetched
from a block page into the page-register, and a down-
load phase where the data is transferred off-chip.

ReadSig
∆LUN
b? : BlkAddr
p? : PageAddr
c? : ColAddr
data! : seqData
blks′ = blks
ok! : B

rdy ∈ SR
c?+#data! < pagecount + spare
SR′ = rdy

One key difference is that no status regarding success or
failure is reported. It is up to the host to use techniques
like CRC in order to ensure the integrity of the data read
out.

ReadOK
ReadSig

PR′ = blks(b?)(p?)
data! = {c . . c+#data!−1} » PR′
ok!

We cannot simply model this as the disjunction of a suc-
cessful operation schema and one denoting failure as the
distinction between success and failure is not observ-
able, and we would end up with a model that allowed
any data values to be returned by a read. We could as-
sume that read always succeeds, and that any errors that
occur do so as a result of some state-changing operation
such as page programming or block erasure. This is not
totally accurate as it effectively makes read failure ob-
servable indirectly, in that we can predict it will occur if
we read a page after a failed program of that same page.

Ultimately there is no guarantee we can observe a
read failure, only techniques for reducing the probabil-
ity of un-observed failure down to an acceptable low
level. As an appropriate separation of concerns, we
shall therefore model the read operation as having an
output that reports success or failure, and leave the is-
sue of ensuring that it is very unlikely to be in error to
the design of the error-detection and correction mecha-
nisms used in an implementation.

ReadFail
ReadSig

∃garbage : Page • PR′ = garbage
∃ junk : Page • data! = {c . . c+#data!−1} » junk
6 ok!

Read can succeed or fail:

Read = ReadOK ∨ ReadFail

4.9. Change Read Column Operation

Just as for page program, we can read different
fragments of a page out simply by supplying a fresh
column address. As before, we simply model this as
another Read operation, at this level of abstraction.

4.10. Block Erase Operation

Block erasure simply sets every item of every page
of the designated block to the erase values (all bits set
to ‘1’). It sets the LUN status register appropriately, so
we consider this a LUN-level operation:

BlockEraseOK
∆LUN
b? : BlkAddr

rdy ∈ SR
wp /∈ SR
SR′ = {rdy}
PR′ = PR
blks′ = blks⊕{b? 7→ erasedBlk}

The status register does record failure here if it occurs,
in which case the block contents are undefined:

BlockEraseFail
∆LUN
b? : BlkAddr

rdy ∈ SR
wp /∈ SR
SR′ = {fail,rdy}
PR′ = PR
∃ junk : Block • blks′ = blks⊕{b? 7→ junk}

BlockErase = BlockEraseOK ∨ BlockEraseFail

5. Future Work

These are only first steps and there is a lot of key
work to be done. Formal models will be needed to
capture the fact that individual targets within a device
can be operating concurrently, with interleaving of data-
transfers. Also, the behaviour of these devices is de-
scribed in the specification document using two finite-
state machines, one for target behaviour, the other for
LUN activity. A model of these needs to be shown as a
refinement of the abstract operation model presented in
this paper. This requires that the existing operators need
to be expressed in terms of basic host/device communi-
cation actions, which transfer a single item of informa-
tion, such as a command, address or data byte/word. A
sketch of the structure of such a model is given as an
appendix (Appendix ??).

The model needs to be extended to cover the non-
mandatory operations of the standard, many of which
provide improved performance, via various forms of
caching and interleaving. It is to be anticipated that
any filestore will make extensive use of these in order
to meet mission performance targets. In many cases a
useful model of these will require that the operations are
broken down to a smaller granularity.

NAND Flash devices are prone to the unrecover-
able failure of blocks over time, through what basically
amounts to an ageing process, that is strongly workload

related. This requires so-called “wear-levelling” algo-
rithms to minimise the failure rate, as well as some form
of fault tolerance to cope with the failures that do occur.
This requires us to model failure properly, with a par-
ticular emphasis on the fact that such failures have a
persistent and lasting effect.

We also need to look upwards (in an abstract sense)
from the NAND devices to model how they are used to
give an illusion of ideal behaviour. Whilst the spare area
associated with each data page is there to assist with er-
ror detection and recovery, the Flash devices themselves
have no fault-tolerant mechanisms built-in. Instead the
devices have to be interfaced to a controller that man-
ages the faults, and presents a fault-free model of data
storage to the level above.

References

[1] Seiichi Aritome et al. Reliability issues of flash memory
cells (invited paper). Proc. of the IEEE, 81(5):776–788,
May 1993.

[2] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and
Martin C. Rinard. Verifying a file system implemen-
tation. In Jim Davies, Wolfram Schulte, and Michael
Barnett, editors, ICFEM, volume 3308 of Lecture Notes
in Computer Science, pages 373–390. Springer, 2004.

[3] Maritta Heisel. Specification of the unix file system: A
comparative case study. In Algebraic Methodology and
Software Technology, pages 475–488, 1995.

[4] Tony Hoare. The verifying compiler: A grand challenge
for computing research. Journal of the ACM, 50(1):63–
69, 2003.

[5] Hynix Semiconductor et al. Open NAND Flash Interface
Specification. Technical Report Revision 1.0, ONFI,
www.onfi.org, 28th December 2006.

[6] Han joon Kim and Sang goo Lee. A new flash memory
management for flash storage system. In COMPSAC,
page 284. IEEE Computer Society, 1999.

[7] Rajeev Joshi and Gerard J. Holzmann. A mini challenge:
Build a verifiable filesystem. In Proc. Verified Software:
Theories, Tools, Experiments (VSTTE), Zürich, 2005.

[8] Taeho Kgil and Trevor Mudge. Flashcache: a nand flash
memory file cache for low power web servers. In CASES
’06: Proceedings of the 2006 international conference
on Compilers, architecture and synthesis for embedded
systems, pages 103–112, New York, NY, USA, 2006.
ACM Press.

[9] Seung-Ho Lim and Kyu-Ho Park. An efficient NAND
flash file system for flash memory storage. IEEE Trans-
actions on Computers, 55(7):906–912, July 2006.

[10] Charles Manning. Introducing YAFFS, the first NAND-
specific flash file system. LinuxDevices.com, Sep 2002.

[11] B. Marsh, F. Douglis, and P. Krishnan. Flash mem-
ory file caching for mobile computers. In Trevor N.
Mudge and Bruce D. Shriver, editors, Proceedings of
the 27th Annual Hawaii International Conference on

System Sciences, Vol. I: Architecture, HICSS’94 (Maui,
Hawaii, January 4-7, 1994), volume 1, pages 451–460,
Los Alamitos-Washington-Brussels-Tokyo, 1994. IEEE
Computer Society Press.

[12] Silvio Lemos Meira, Ana Lúcia C. Cavalcanti, and Cas-
sio Souza Santos. The Unix filing system: A MooZ
specification. In Kevin Lano and Howard Haughton,
editors, Object-Oriented Specification Case Studies,
The Object-Oriented Series, chapter 4, pages 80–109.
Prentice-Hall, New York, NY, 1994.

[13] Carrol Morgan and Bernard Sufrin. Specification case
studies, chapter Specification of the UNIX filing system,
pages 91–140. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, UK, 1987.

[14] Axel Sikora, Frank-Peter Pesl, Walter Unger, and
Uwe Paschen. Technologies and reliability of mod-
ern embedded flash cells. Microelectronics Reliability,
46(12):1980–2005, 2006.

[15] J. M. Spivey. The Z Notation: A Reference Manual. In-
ternational Series in Computer Science. Prentice Hall,
2nd edition, 1992.

[16] Gregory G. Williams et al. NAND flash mem-
ory management. US Patent Application Publication,
US2006/0239075 A1, Oct 2006.

[17] Jim Woodcock. First steps in the verified software grand
challenge. IEEE Computer, 39(10):57–64, 2006.

[18] Jim Woodcock and Jim Davies. Using Z. Intl. Series in
Computer Science. Prentice Hall, 1996.

[19] David Woodhouse. JFFS: The Journalling Flash File
System. Ottawa Linux Symposium 2001, Oct 2001.

[20] Junfeng Yang, Paul Twohey, Dawson Engler, and
Madanlal Musuvathi. Using model checking to find
serious file system errors. ACM Trans. Comput. Syst,
24(4):393–423, 2006.

A. Hardware Interface Model

Here we simply sketch out the shape of the low-
level model that will be required to capture more detail
of how a host actually interacts with a NAND Flash de-
vice. In particular this model would allow us to address
impoertant performance and reliability issues, such a
wear-levelling, or operation interleaving.

The hardware interface model will require more
details about the control-state of a NAND Flash de-
vice, in addition to the memory data that makes up the
NANDFlash model just presented. This is because ac-
cess to a NAND Flash device is mediated by a sequence
of low-level access operations that transfer a single unit
of data between the host and the device. Operations
such as Page Program or Read are a choreographed se-
quence of lower level operations, whose behaviour is
described by two types of finite-state machine (FSM),
described the ONFI specification. One FSM type de-
scribes the control behaviour associated with a given
LUN [5, §7.1, pp77–89]:

LUN FSM
. . .

The other type of FSM describes how a target is con-
trolled [5, §7.2, pp90–100]:

TargetFSM
. . .

Conceptually the control of a NAND Flash device is
described as a hierarchy of communicating FSMs. The
host communicates with a target FSM through the low-
level access operations. Internally the target FSM com-
municates with each of its constituent LUN FSMs.

Hardware
fms : TgtId → (TargetFSM

× (LUNAddr → LUN FSM))
. . .

At this level our operations model a single communi-
cation event between host and device in which a single
information item (byte or word) is transferred. There
are three distinct types of information that the host can
send to the device: Command, Address and Data. We
model this using three different Write . . . operations.

Commands are modelled as an enumerated (free)
type:

Cmd ::= reset | rdstatus | . . .

We send a command to a device by supplying it and the
relevant target identifier:

WriteCommand
∆Hardware
t? : TgtId
cmd? : Cmd

. . .

Addresses model byte-sized fragments of both row and
column addresses, so we generally need send an address
in pieces, least significant byte first, also identifying the
target:

WriteAddress
∆Hardware
t? : TgtId
addr? : Byte

. . .

The operation WriteData is described analogously.

There are two types of information that can be read
from a device, and transferred back to the host. Firstly,
we can get a data item transferred:

ReadData
∆Hardware
t? : TgtId
data! : Byte

. . .

Although this operation looks like a query function re-
turning a value, it does in fact change the state. The data
item returned comes from the currently active LUN,
from the current Read Column address. This address
is then incremented to point to the next data item. A
similar use of a Write Column address occurs also in
the WriteData operation. The second way to return in-
formation from device to host is to check the ready/busy
status of the device:

Readiness ::= ready | busy

This operation is required to ensure that the device has
completed operations such as Read or Page Program,
where time is required internally by the device to trans-
fer data to/from the relevant page register. We could
define a polling operation that returns this status, but
in practice, given that it is signalled by a single target-
specific device pin, it is more likely to generate an inter-
rupt. Given this, we model it as an operation that waits
for it to take the value ready before completing:

WaitForReady
∆Hardware
t? : TgtId

. . .

The post-condition here describes the device state that
would be consistent with a completed operation.

A point worth noting is that all these hardware-
level operators are total, with the trivial pre-condition
true.

An operation from the NANDFlash model is then
modelled as the sequential composition of appropriate
hardware operations, as defined in the ONFI specifi-
cation [5, §5, pp39–70]. For example, the Read Sta-
tus operation at the hardware level consists of writing
the readstatus command to the device, and then reading
back the status as a data item:

HardwareReadStatus
∆Hardware
t? : TgtId
status! : Byte

∃Hardware′′ •
∃Hardware′; cmd? : Cmd •

[WriteCommand; Hardware′′
| cmd? = readstatus
θHardware′ = θHardware′′]

∧
∃Hardware •

[ReadData; Hardware′′
| θHardware = θHardware′′]

The model to be developed here will allow us to
formally verify two key and important aspects of the
ONFI specification:

FSM Validation We will be able to show that the fi-
nite state machines described in the document are
a correct implementation of the abstract behaviour
of the NAND Flash commands as described in the
NANDFlash model.

Efficient Interleaving Efficient use of NAND Flash
devices involves interleaving of operations, by
allowing external host-device transfers to inter-
leave with internal page/page-register data move-
ment. Also, among the optional ONFI operations
are cached versions of the data-transfer operations
that allow an even higher degree of data trans-
fer speedup. The Hardware model can support
the verification of the correctness of filestore al-
gorithms that exploit these features. It can also
be used to verify the correctness of certain pro-
tocols described in the ONFI document regarding
the use of the interleaved features. These proto-
cols allow the interleaving to be safely invoked at
a higher level of abstraction, such as at the level of
the NANDFlash model, which makes the verifica-
tion task somewhat simpler.

